spin-state transition; Mossbauer spectroscopy; magnetic properties
Abstract :
[en] The complex {Fe[HC(3-Mepz)2(5-Mepz)]2}(BF4)2 (pz = pyrazolyl ring) has been prepared by the reaction of HC(3-Mepz)2(5-Mepz) with Fe(BF4)2·6H2O. The solid state structures obtained at 294 and 150 K show a distorted iron(II) octahedral N6 coordination environment with the largest deviations arising from the restrictions imposed by the chelate rings. At 294 K the complex is predominately high-spin with Fe–N bond distances averaging 2.14 Å, distances that are somewhat shorter than expected for a purely high-spin iron(II) complex because of the presence of an admixture of ca. 70 (I get 80 from both mag and X-ray, 3/15, where 3 is the subtraction of 2.14 and 2.17 and 15 1.99 and 2.14 and from Figure 3b) percent high-spin and 30 (20) percent low-spin iron(II). At 294 K the twisting of the pyrazolyl rings from the ideal C3v symmetry averages only 2.2o, a much smaller twist than has been observed previously in similar complexes. At 150 K the Fe–N bond distances average 1.99 Å, indicative of an almost fully low-spin iron(II) complex; the twist angle is only 1.3o, as expected for a complex with these Fe–N bond distances. The magnetic properties show that the complex undergoes a gradual change from low-spin iron(II) below 85 K to high-spin iron(II) at 400 K. The 4.2 to 60 K Mössbauer spectra correspond to a fully low-spin iron(II) complex but, upon further warming, the iron(II) begins to undergo spin-state relaxation on the Mössbauer time scale such that, at 155 and 315 K, the complex is 7.5 and 65 percent high-spin in the absence of any adjustment for the differing low-spin and high-spin recoil-free fractions. I would replace the previous sentence with the red. I see no reason to give the % from the Mössbauer in the abstract as it is likely a bit low as discussed in detail – neither the mag data nor X-ray data have the recoil issue. The last sentence in the abstract is the key information. OK The 4.2 to 60 K Mössbauer spectra correspond to a fully low-spin-iron(II) complex but, upon further warming above 85 K the iron(II) begins to undergo spin-state relaxation between the low- and high-spin forms on the Mössbauer time scale. At 155 and 315 K the complex exhibits spin-state relaxation rates of 0.36 and 7.38 MHz, respectively, and an Arrhenius plot of the logarithm of the relaxation rate yields an activation energy of 670 ± 40 cm–1 for the spin-state relaxation.
Disciplines :
Chemistry
Author, co-author :
Reger, Daniel; University of North Carolina > CHemistry
Elgin, J.; University of North Carolina
Foley, E.; University of North Carolina
SMith, M.; University of North Carolina
Grandjean, Fernande ; Université de Liège - ULiège > Département de physique > Département de physique
Long, Gary J.
Language :
English
Title :
Structural, Magnetic and Mössbauer Spectral Study of the Electronic Spin-state Transition in {Fe[HC(3-Mepz)2(5-Mepz)]2}(BF4)2
Publication date :
2009
Journal title :
Inorganic Chemistry
ISSN :
0020-1669
eISSN :
1520-510X
Publisher :
American Chemical Society, Washington, United States - District of Columbia
Müller, R. N.; Van der Elst, L.; Laurent, S. J. Am. Chem. Soc. 2003, 125, 8405.
(a) Jesson, J. P.; Trofimenko, S.; Eaton, D. R. J. Am. Chem. Soc. 1967, 89, 3158.
(b) Jesson, J. P.; Weiher, J. F.; Trofimenko, S. J. Chem. Phys. 1968, 48, 2058.
(c) Long, G. J.; Grandjean, F.; Reger, D. L. In Spin Crossover in Transition Metal Compounds I; Gütlich, P., Goodwin, H. A., Eds.; Springer: Berlin, 2004; p 91.
(a) Reger, D. L.; Gardinier, J. R.; Smith, M. D.; Shahin, A. M.; Long, G. J.; Rebbouh, L.; Grandjean, F. Inorg. Chem. 2005, 44, 1852.
(b) Reger, D. L.; Gardinier, J. R; Gemmill, W.; Smith, M. D.; Shahin, A. M.; Long, G. J.; Rebbouh, L.; Grandjean, F. J. Am. Chem. Soc. 2005, 127, 2303.
(c) Reger, D. L.; Gardinier, J. R; Elgin, J. D.; Smith, M. D.; Hautot, D.; Long, G. J.; Rebbouh, L.; Grandjean, F. Inorg. Chem. 2006, 45, 8862.
(d) Reger, D. L.; Elgin, J. D.; Smith, M. D.; Grandjean, F.; Rebbouh, L.; Long, G. J. Polyhedron 2006, 25, 2616.
(a) Reger, D. L.; Little, C. A.; Rheingold, A. L.; Lam, M.; Concolino, T.; Mohan, A.; Long, G. J. Inorg. Chem. 2000, 39, 4674.
(b) Reger, D. L.; Little, C. A.; Rheingold, A. L.; Lam, M.; Liable-Sands, L. M.; Rhagitan, B.; Conoolino, T.; Mohan, A.; Long, G. J.; Briois, V.; Grandjean, F. Inorg. Chem. 2001, 40, 1508.
(c) Reger, D. L.; Little, C. A.; Young, V. G., Jr.; Pink, M. Inorg. Chem. 2001, 40, 2870.
(d) Reger, D. L.; Little, C. A.; Smith, M. D.; Long, G. J. Inorg. Chem. 2002, 41, 4453.
(e) Reger, D. L.; Little, C. A.; Smith, M. D.; Rheingold, A. L.; Lam, K.-C.; Conoolino, T. L.; Long, G. J.; Hermann, R. P.; Grandjean, F. Eur. J. Inorg. Chem. 2002, 1190.
(f) Reger, D. L.; Little, C. A.; Semeniuo, R. F.; Smith, M. D. Inorg. Chim. Acta 2009, 363, 303.
(g) Reger, D. L.; Elgin, J. D.; Smith, M. D.; Grandjean, F.; Rebbouh, L.; Long, G. J. Eur. J. Inorg. Chem. 2004, 3345.
(a) Anderson, P. A.; Astley, T.; Hitchman, M. A.; Keene, F. R.; Moubaraki, B.; Murray, K. S.; Skelton, B. W.; Tiekink, E. R. T.; Toftlund, H.; White, A. H. J. Chem. Soc., Dalton Trans. 2000, 3505.
(c) Moubaraki, B.; Leita, B. A.; Haider, G. J.; Batten, S. R; Jensen, P.; Smith, J. P.; Cashion, J. D.; Kepert, C. J.; Létard, J. -F.; Murray, K. S. J. Chem. Soc., Dalton Trans. 2007, 4413.
(a) Reger, D. L.; Gardinier, J. R.; Semeniuc, R. F.; Smith, M. D. J. Chem. Soc., Dalton Trans. 2003, 1712.
(b) Reger, D. L.; Wright, T. D.; Semeniuc, R F.; Grattan, T. C.; Smith, M. D. Inorg. Chem. 2001, 40, 6212.
(c) Reger, D. L.; Semeniuc, R. F.; Smith, M. D. Eur. J. Inorg. Chem. 2002, 543.
(d) Reger, D. L.; Semeniuc, R F.; Smith, M. D. J. Chem. Soc., Dalton Trans. 2002, 476.
(e) Reger, D. L.; Semeniuc, R. F.; Smith, M. D. J. Organomet. Chem. 2003, 666, 87.
(f) Reger, D. L.; Semeniuc, R F.; Silaghi-Dumitrescu, I.; Smith, M. D. Inorg. Chem. 2003, 42, 3751.
(g) Reger, D. L.; Semeniuc, R. F.; Smith, M. D. Inorg. Chem. 2003, 42, 8137.
SMART Version 5.625 and SAINT+ Version 6.22; Bruker Analytical X-ray Systems, Inc.: Madison, WI, 2001.
Sheldrick, G. M. SHELXTL, Version 6.1; Bruker Analytical X-ray Systems, Inc.: Madison, WI, 2000.
Figgis, B. N. Introduction to Ligand Fields; Wiley-Intersoienoe: New York, 1966; p 274.
Litterst, F. J.; Amthauer, G. Phys. Chem. Miner. 1984, 10, 250.
Remade, F.; Grandjean, F.; Long, G. J. Inorg. Chem. 2008, 47,4005.
Ingalls, R. Phys. Rev. 1964, 133, A787.
Grandjean, F.; Long, G. J.; Hutchinson, B. B.; Ohlhausen, L.; Neill, P.; Holcomb, J. D. Inorg. Chem. 1989, 28, 4406.
Shenoy, G. K.; Wagner, F. E.; Kalvius, G. M. In Mössbauer Isomer Shifts; Shenoy, G. K.; Wagner, F. E., Eds.; Elsevier Science: North-Holland, Amsterdam, 1978; p 49.
Owen, T.; Grandjean, F.; Long, G. J.; Domasevitch, K. V.; Gerasimchuk, N. Inorg. Chem. 2008, 47, 8704.