spin-state transition; Mossbauer spectroscopy; magnetic properties
Abstract :
[en] The complex {Fe[HC(3-Mepz)2(5-Mepz)]2}(BF4)2 (pz = pyrazolyl ring) has been prepared by the reaction of HC(3-Mepz)2(5-Mepz) with Fe(BF4)2·6H2O. The solid state structures obtained at 294 and 150 K show a distorted iron(II) octahedral N6 coordination environment with the largest deviations arising from the restrictions imposed by the chelate rings. At 294 K the complex is predominately high-spin with Fe–N bond distances averaging 2.14 Å, distances that are somewhat shorter than expected for a purely high-spin iron(II) complex because of the presence of an admixture of ca. 70 (I get 80 from both mag and X-ray, 3/15, where 3 is the subtraction of 2.14 and 2.17 and 15 1.99 and 2.14 and from Figure 3b) percent high-spin and 30 (20) percent low-spin iron(II). At 294 K the twisting of the pyrazolyl rings from the ideal C3v symmetry averages only 2.2o, a much smaller twist than has been observed previously in similar complexes. At 150 K the Fe–N bond distances average 1.99 Å, indicative of an almost fully low-spin iron(II) complex; the twist angle is only 1.3o, as expected for a complex with these Fe–N bond distances. The magnetic properties show that the complex undergoes a gradual change from low-spin iron(II) below 85 K to high-spin iron(II) at 400 K. The 4.2 to 60 K Mössbauer spectra correspond to a fully low-spin iron(II) complex but, upon further warming, the iron(II) begins to undergo spin-state relaxation on the Mössbauer time scale such that, at 155 and 315 K, the complex is 7.5 and 65 percent high-spin in the absence of any adjustment for the differing low-spin and high-spin recoil-free fractions. I would replace the previous sentence with the red. I see no reason to give the % from the Mössbauer in the abstract as it is likely a bit low as discussed in detail – neither the mag data nor X-ray data have the recoil issue. The last sentence in the abstract is the key information. OK The 4.2 to 60 K Mössbauer spectra correspond to a fully low-spin-iron(II) complex but, upon further warming above 85 K the iron(II) begins to undergo spin-state relaxation between the low- and high-spin forms on the Mössbauer time scale. At 155 and 315 K the complex exhibits spin-state relaxation rates of 0.36 and 7.38 MHz, respectively, and an Arrhenius plot of the logarithm of the relaxation rate yields an activation energy of 670 ± 40 cm–1 for the spin-state relaxation.
Disciplines :
Chemistry
Author, co-author :
Reger, Daniel; University of North Carolina > CHemistry
Elgin, J.; University of North Carolina
Foley, E.; University of North Carolina
SMith, M.; University of North Carolina
Grandjean, Fernande ; Université de Liège - ULiège > Département de physique > Département de physique
Long, Gary J.
Language :
English
Title :
Structural, Magnetic and Mössbauer Spectral Study of the Electronic Spin-state Transition in {Fe[HC(3-Mepz)2(5-Mepz)]2}(BF4)2
Publication date :
2009
Journal title :
Inorganic Chemistry
ISSN :
0020-1669
eISSN :
1520-510X
Publisher :
American Chemical Society, Washington, United States - District of Columbia
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
(a) Gütlich, P. In Mössbauer Spectroscopy Applied to Inorganic Chemistry; Long, G. J., Ed.; Plenum: New York, 1984; Vol. 1: p. 287.
Müller, R. N.; Van der Elst, L.; Laurent, S. J. Am. Chem. Soc. 2003, 125, 8405.
(a) Jesson, J. P.; Trofimenko, S.; Eaton, D. R. J. Am. Chem. Soc. 1967, 89, 3158.
(b) Jesson, J. P.; Weiher, J. F.; Trofimenko, S. J. Chem. Phys. 1968, 48, 2058.
(c) Long, G. J.; Grandjean, F.; Reger, D. L. In Spin Crossover in Transition Metal Compounds I; Gütlich, P., Goodwin, H. A., Eds.; Springer: Berlin, 2004; p 91.
(a) Reger, D. L.; Gardinier, J. R.; Smith, M. D.; Shahin, A. M.; Long, G. J.; Rebbouh, L.; Grandjean, F. Inorg. Chem. 2005, 44, 1852.
(b) Reger, D. L.; Gardinier, J. R; Gemmill, W.; Smith, M. D.; Shahin, A. M.; Long, G. J.; Rebbouh, L.; Grandjean, F. J. Am. Chem. Soc. 2005, 127, 2303.
(c) Reger, D. L.; Gardinier, J. R; Elgin, J. D.; Smith, M. D.; Hautot, D.; Long, G. J.; Rebbouh, L.; Grandjean, F. Inorg. Chem. 2006, 45, 8862.
(d) Reger, D. L.; Elgin, J. D.; Smith, M. D.; Grandjean, F.; Rebbouh, L.; Long, G. J. Polyhedron 2006, 25, 2616.
(a) Reger, D. L.; Little, C. A.; Rheingold, A. L.; Lam, M.; Concolino, T.; Mohan, A.; Long, G. J. Inorg. Chem. 2000, 39, 4674.
(b) Reger, D. L.; Little, C. A.; Rheingold, A. L.; Lam, M.; Liable-Sands, L. M.; Rhagitan, B.; Conoolino, T.; Mohan, A.; Long, G. J.; Briois, V.; Grandjean, F. Inorg. Chem. 2001, 40, 1508.
(c) Reger, D. L.; Little, C. A.; Young, V. G., Jr.; Pink, M. Inorg. Chem. 2001, 40, 2870.
(d) Reger, D. L.; Little, C. A.; Smith, M. D.; Long, G. J. Inorg. Chem. 2002, 41, 4453.
(e) Reger, D. L.; Little, C. A.; Smith, M. D.; Rheingold, A. L.; Lam, K.-C.; Conoolino, T. L.; Long, G. J.; Hermann, R. P.; Grandjean, F. Eur. J. Inorg. Chem. 2002, 1190.
(f) Reger, D. L.; Little, C. A.; Semeniuo, R. F.; Smith, M. D. Inorg. Chim. Acta 2009, 363, 303.
(g) Reger, D. L.; Elgin, J. D.; Smith, M. D.; Grandjean, F.; Rebbouh, L.; Long, G. J. Eur. J. Inorg. Chem. 2004, 3345.
(a) Anderson, P. A.; Astley, T.; Hitchman, M. A.; Keene, F. R.; Moubaraki, B.; Murray, K. S.; Skelton, B. W.; Tiekink, E. R. T.; Toftlund, H.; White, A. H. J. Chem. Soc., Dalton Trans. 2000, 3505.
(c) Moubaraki, B.; Leita, B. A.; Haider, G. J.; Batten, S. R; Jensen, P.; Smith, J. P.; Cashion, J. D.; Kepert, C. J.; Létard, J. -F.; Murray, K. S. J. Chem. Soc., Dalton Trans. 2007, 4413.
(a) Reger, D. L.; Gardinier, J. R.; Semeniuc, R. F.; Smith, M. D. J. Chem. Soc., Dalton Trans. 2003, 1712.
(b) Reger, D. L.; Wright, T. D.; Semeniuc, R F.; Grattan, T. C.; Smith, M. D. Inorg. Chem. 2001, 40, 6212.
(c) Reger, D. L.; Semeniuc, R. F.; Smith, M. D. Eur. J. Inorg. Chem. 2002, 543.
(d) Reger, D. L.; Semeniuc, R F.; Smith, M. D. J. Chem. Soc., Dalton Trans. 2002, 476.
(e) Reger, D. L.; Semeniuc, R. F.; Smith, M. D. J. Organomet. Chem. 2003, 666, 87.
(f) Reger, D. L.; Semeniuc, R F.; Silaghi-Dumitrescu, I.; Smith, M. D. Inorg. Chem. 2003, 42, 3751.
(g) Reger, D. L.; Semeniuc, R. F.; Smith, M. D. Inorg. Chem. 2003, 42, 8137.
SMART Version 5.625 and SAINT+ Version 6.22; Bruker Analytical X-ray Systems, Inc.: Madison, WI, 2001.
Sheldrick, G. M. SHELXTL, Version 6.1; Bruker Analytical X-ray Systems, Inc.: Madison, WI, 2000.
Figgis, B. N. Introduction to Ligand Fields; Wiley-Intersoienoe: New York, 1966; p 274.
Litterst, F. J.; Amthauer, G. Phys. Chem. Miner. 1984, 10, 250.
Remade, F.; Grandjean, F.; Long, G. J. Inorg. Chem. 2008, 47,4005.
Ingalls, R. Phys. Rev. 1964, 133, A787.
Grandjean, F.; Long, G. J.; Hutchinson, B. B.; Ohlhausen, L.; Neill, P.; Holcomb, J. D. Inorg. Chem. 1989, 28, 4406.
Shenoy, G. K.; Wagner, F. E.; Kalvius, G. M. In Mössbauer Isomer Shifts; Shenoy, G. K.; Wagner, F. E., Eds.; Elsevier Science: North-Holland, Amsterdam, 1978; p 49.
Owen, T.; Grandjean, F.; Long, G. J.; Domasevitch, K. V.; Gerasimchuk, N. Inorg. Chem. 2008, 47, 8704.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.