Reconstruction of Missing Satellite Total Suspended Matter Data over the Southern North Sea and English Channel using Empirical Orthogonal Function Decomposition of Satellite Imagery and Hydrodynamical Modelling
North Sea; English Channel; total suspended matter; Remote sensing; cloud filling; Empirical Orthogonal Functions; multivariate; hydrodynamical model
Abstract :
[en] Optical remote sensing data archives generally have many gaps caused by clouds or other retrieval problems. However, for the light forcing of ecosystem models continuous fields are required. For parameters exhibiting strong spatial and temporal correlations for regions of similar dynamics or from day to day, the missing data can be estimated by use of statistical techniques. In this context, the Data Interpolation with Empirical Orthogonal Functions (DINEOF) method is used for reconstruction of complete space-time information for surface total suspended matter (TSM) and chlorophyll a from a 5-year archive of MODIS and MERIS products over the Southern North Sea and English Channel.
The DINEOF univariate methodology has been previously demonstrated for Mediterranean sea surface temperature data (Alvera-Azcarate et al., 2005, Beckers et al., 2006). Alvera-Azcarate et al (2007) showed that SST reconstructions could be improved by using a multivariate approach in which SST, chlorophyll and wind fields were taken into account together for the analyses.
Here, TSM images will be used in combination with information from the COHERENS hydrodynamical model to provide a complete and continuous estimate of surface TSM for the Southern North Sea throughout the period 2003-2005. In addition to the remotely sensed TSM, the DINEOF multivariate analysis will consider wind fields, depth integrated currents, surface elevations and bottom stresses. Reconstucted images are compared with the original incomplete images. Validation of the method is achieved by estimation of information removed from the training data by exclusion of entire images and by addition of artificial clouds.
The data reconstruction technique has further applications in the processing and quality control of optical remote sensing data. Perspectives will be outlined for improving the quality control of retrieved parameters and for the improvement of retrievals by adding statistical information to the conventional spectral processing.
References:
Alvera-Azcarate, A., Barth, A., Rixen, M., and Beckers, J.-M.: Reconstruction of incomplete oceanographic data sets using Empirical Orthogonal Functions. Application to the Adriatic Sea, Ocean Modelling, 9, 325–346, 2005.
Alvera-Azcarate, A., Barth, A., Beckers, J. M., and Weisberg, R. H.: Multivariate Reconstruction of Missing Data in Sea Surface Temperature, Chlorophyll and Wind Satellite Fields, Journal of Geophysical Research, 112, C03008, doi:10.1029/2006JC003660, 2007.
Beckers J.-M., A. Barth & A. Alvera-Azcarate, DINEOF reconstruction of clouded images including error maps. Application to the Sea-Surface Temperature around Corsican Island, Ocean Sciences, 2: 183–199, 2006.
Research Center/Unit :
Centre Interfacultaire de Recherches en Océanologie - MARE - GHER
Sirjacobs, Damien ; Université de Liège - ULiège > Département des sciences de la vie > Algologie, mycologie et systématique expérimentale
Alvera Azcarate, Aïda ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Barth, Alexander ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Lacroix, Geneviève; Royal Belgian Institute of Natural Sciences (RBINS) > Management Unit of the North Sea Mathematical Models (MUMM)
Park, Youngje; CSIRO Land and Water > Environmental Remote Sensing Group
Nechad, Bouchra; Royal Belgian Institute of Natural Sciences (RBINS) > Management Unit of the North Sea Mathematical Models (MUMM)
Ruddick, Kevin; Royal Belgian Institute of Natural Sciences (RBINS) > Management Unit of the North Sea Mathematical Models (MUMM)
Beckers, Jean-Marie ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Language :
English
Title :
Reconstruction of Missing Satellite Total Suspended Matter Data over the Southern North Sea and English Channel using Empirical Orthogonal Function Decomposition of Satellite Imagery and Hydrodynamical Modelling
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.