Slope flows; CO2 transport; Net ecosystem exchange; Advection; Forest exchange; ADVEX
Abstract :
[en] Data from the flux tower site Renon/Ritten, Italy, located at 1735 m. a.s.l. on a south exposed steep (11 degrees) forested alpine slope, is analyzed. In spite of the complex terrain, a persistent slope wind system prevailed at the site during most of the ADVEX campaign from April to September 2005. We describe in detail how CO2 is transported parallel to the slope and how this transport affects net ecosystem exchange (NEE) in the diurnal course. The local slope wind system may be strongly modified by two different large scale synoptic situations. The "Tramontana", a persistent strong wind from the north, amplified the drainage flow during nighttime and suppressed the upslope flow above the forest canopy during daytime. Vice versa, we observed periods with continuing flow from the south, which supported the local daytime upslope flow and partly suppressed the nighttime downslope flow. This led to periods of several hours with opposite flow directions in and above the canopy. Depending on the prevailing situation, the trunk space is coupled and/or decoupled with/from the roughness sublayer above the forest canopy. In particular, vertical and horizontal mixing of CO2 was strongly dependent on the dominating wind field with essential impact on the horizontal advective flux of CO2. The most common "Local" situation, dominated by the slope wind system, showed positive horizontal and vertical advection (with typical values around 7 and 3 mu mol m(-2) s(-1), respectively) together with downslope winds at night and slightly negative horizontal advection (typical values around 2 mu mol m(-2) s(-1)) together with upslope winds during the day. This pattern was amplified at night when the wind was consistently (day and night) blowing downslope (the "Tramontana" situation) and, vice versa, attenuated during the night, when the wind was blowing permanently upslope (the "Southerlies" situation). Taking into account these advective fluxes would significantly reduce the reported annual CO2 uptake of this forest. Related effects are expected to occur at flux tower sites with similar topography and vegetation. (C) 2009 Elsevier B.V. All rights reserved.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Feigenwinter, Christian; Université de Liège - ULiège - Gembloux Agro-Bio Tech > Sciences et Technologies de l'environnement > Physique des bio-systèmes
Montagnani, Leonardo; Forest Service and Agency fot he Environment, Autonomous Province of Bolzano, Bolzano, Italy
Aubinet, Marc ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Physique des bio-systèmes
Language :
English
Title :
Plot-scale vertical and horizontal transport of CO2 modified by a persistent slope wind system in and above an alpine forest
Aubinet M. Eddy covariance CO2 flux measurements in nocturnal conditions: an analysis of the problem. Ecol. Appl. 18 6 (2008) 1368-1378
Aubinet M., Heinesch B., and Yernaux M. Horizontal and vertical CO2 advection in a sloping forest. Bound. Lay. Meteorol. 108 (2003) 397-417
Aubinet M., Grelle A., Ibrom A., Rannik U., Moncrieff J., Foken T., Kowalski A.S., Martin P.H., Berbigier P., Bernhofer C., Clement R., Elbers J., Granier A., Grünwald T., Morgenstern K., Pilegaard K., Rebmann C., Snijders W., Valentini R., and Vesala T. Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv. Ecol Res. 30 (2000) 113-175
Baldocchi D.D., Falge E., Gu L., Olson R., Hollinger D., Running D., Anthoni P.M., Bernhofer C., Davis K.J., Evans R., Fuentes J.D., Goldstein A.H., Katul G.G., Law B.E., Lee Z., Malhi Y., Meyers T.P., Munger W., Oechel W., Paw U.K.T., Pilegaard K., Schmid H.P., Valentini R., Verma S.B., Vesala T., Wilson K.B., and Wofsy S.C. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Met. Soc. 82 11 (2001) 2415-2434
Cescatti A., and Marcolla B. Drag coefficient and turbulence intensity in conifer canopies. Agric. Forest Meteorol. 121 (2004) 197-206
De Araújo A.C., Kruijt B., Nobre A.D., Dolman A.J., Waterloo M.J., Moors E.J., and de Souza J.S. Nocturnal accumulation of CO2 underneath a tropical forest canopy along a topographical gradient. Ecol. Appl. 18 6 (2008) 1406-1419
Feigenwinter C., Bernhofer C., Eichelmann U., Heinesch B., Hertel M., Janous D., Kolle O., Lagergren F., Lindroth A., Minerbi S., Moderow U., Mölder M., Montagnani L., Queck R., Rebmann C., Vestin P., Yernaux M., Zeri M., Ziegler W., and Aubinet M. Comparison of horizontal and vertical advective CO2 fluxes at three forest sites. Agric. Forest Meteorol. 148 (2008) 12-24
Feigenwinter C., Bernhofer C., and Vogt R. The influence of advection on the short term CO2 budget in and above a forest canopy. Bound. Lay. Meteorol. 113 (2004) 201-224
Grace J. Role of forest biomes in the global carbon balance. In: Griffiths H., and Jarvis P.G. (Eds). The Carbon Balance of Forest Biomes (2005), Taylor & Francis Group, Abingdon, UK 19-45
Heinesch B., Yernaux M., and Aubinet M. Dependence of CO2 advection patterns on wind direction on a gentle forested slope. Biogeosciences 5 (2008) 657-668
Heinesch B., Yernaux M., and Aubinet M. Some methodological questions concerning advection measurements: A case study. Bound. Lay. Meteorol. 122 (2007) 457-478
Hurwitz M.D., Ricciuto D.M., Bakwin P.S., Davis K.J., Wang W., Yi C., and Butler M.P. Transport of carbon dioxide in the presence of storm systems over a northern Wisconsin forest. J. Atmos. Sci. 61 (2004) 607-618
Janssens I.A., Dore S., Epron D., Lankreijer H., Buchmann N., Longdoz B., Brossaud J., and Montagnani L. Climatic influences on seasonal and spatial differences in soil CO2 efflux. In: Valentini R. (Ed). Canopy Fluxes of Energy. Water and Carbon Dioxide of European Forests (2003), Springer, Berlin 235-256 (Ecol. Stud.)
Janssens I.A., Lankreijer H., Matteucci G., Kowalski A.S., Buchmann N., Epron D., Pilegaard K., Kutsch W., Longdoz B., Grünwald T., Montagnani L., Dore S., Rebmann C., Moors E.J., Grelle A., Rannik U., Morgenstern K., Oltchev S., Clement R., Gudmundsson J., Minerbi S., Berbigier P., Ibrom A., Moncrieff J., Aubinet M., Bernhofer C., Jensen N.O., Vesala T., Granier A., Schulze E.-D., Lindroth A., Dolman A.J., Jarvis P.G., Ceulemans R., and Valentini R. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biol. 7 (2001) 269-278
Lee X. On micrometeorological observations of surface-air exchange over tall vegetation. Agric. Forest Meteorol. 91 (1998) 39-49
Lee X., Finnigan J., and Paw U.K.T. Coordinate systems and flux bias error. In: Lee X., Massman W., and Law B. (Eds). Handbook of Micrometeorology (2004), Kluwer Academic Publishers. 1-4020-2264-6 33-66
Leuning R., Zegelin S.J., Jones K., Heather K., and Hughes D. Measurement of horizontal and vertical advectlion of CO2 within a forest canopy. Agric. Forest Meteorol. 148 (2008) 1777-1797
Massman W.J., and Lee X. Eddy covariance flux corrections and uncertainties in long term studies of carbon and energy exchanges. Agric. Forest Meteorol. 113 (2002) 121-144
Mahrt L., Vickers D., Nakamura R., Soler M.R., Sun J., Burns S., and Lenschow D.H. Shallow drainage flows. Bound. Lay. Meteorol. 101 (2001) 243-260
Marcolla B., Cescatti A., Montagnani L., Manca G., Kerschbaumer G., and Minerbi S. Importance of advection in the atmospheric CO2 exchanges of an alpine forest. Agric. Forest Meteorol. 130 (2005) 193-206
Montagnani, L., Manca, G., Canepa, E., Georgieva, E., Acosta, M., Feigenwinter, C., Janous, D., Kerschbaumer, G., Lindroth, A., Minach, L., Minerbi, S., Mölder, M., Pavelka, M., Seufert, G., Zeri, M., Ziegler, W., 2009. A new mass conservation approach to the study of CO2 advection in an alpine forest. J. Geophys. Res., 114, D07306, doi:10.1029/2008JD010650.
Paw U.K.T., Falk M., Suchanek T.H., Ustin S.L., Chen J., Park Y.-S., Winner W.E., Thomas S.C., Hsiao T.C., Shaw R.H., King T.S., Pyles R.D., Schroeder M., and Matista A.A. Carbon dioxide exchange between an old-growth forest and the atmosphere. Ecosystems 7 (2004) 513-524
Rodeghiero M., and Cescatti A. Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps. Global Change Biol. 11 (2005) 1024-1041
Staebler R.M., and Fitzjarrald D.R. Observing subcanopy CO2 advection. Agric. Forest Meteorol. 122 (2004) 139-156
Sun J., Burns S.P., Delany A.C., Oncley S.P., Turnipseed A.A., Stephens B.B., Lenschow D.H., LeMone M.A., Monson R.K., and Anderson D.E. CO2 transport over complex terrain. Agric. Forest Meteorol. 145 (2007) 1-21
Valentini R., Matteucci G., Dolman H., Schultze E.D., Rebmann C., Moors E.J., Granier A., Gross P., Jensen N.O., Pilegaard K., Lindroth A., Grelle A., Bernhofer C., Grünwald T., Aubinet M., Ceulemans R., Kowalski A.S., Vesala T., Rannik U., Berbigier P., Lousteau D., Guomundsson J., Thorgeirsson H., Ibrom A., Morgenstern K., Clement R., Moncrieff J., Montagnani L., Minerbi S., and Jarvis P.G. Respiration as the main determinant of carbon balance in European forests. Nature 404 (2000) 861-865
Vickers D., and Mahrt L. Contrasting mean vertical motion from tilt correction methods and mass continuity. Agric. Forest Meteorol. 138 (2006) 93-103
Whiteman C.D. Mountain Meteorology: Fundamentals and Applications (2000), Oxford University Press
Wilczak J., Oncley S.P., and Stage S.A. Sonic anemometer tilt correction algorithms. Bound. Lay. Meteorol. 99 (2001) 127-150
Yi C., Anderson D.E., Turnipseed A.A., Burns S.P., Sparks J., Stannard D., and Monson K.R. The contribution of advective fluxes to net ecosystem CO2 exchange in a high-elevation, subalpine forest ecosystem. Ecol. Appl. 18 6 (2008) 1379-1390
Yi C., Monson R., Zhai Z., Anderson D., Lamb B., Allwine G., Turnipseed A., and Burns S. Modeling and measuring the nocturnal drainage flow in a high-elevation, subalpine forest with complex terrain. J. Geophys. Res. 110 (2005) D22303 10.1029/2005JD006282