Aminoglycoside 6 '-N-Acetyltransferase Variants Of The Ib Type With Altered Substrate Profile In Clinical Isolates Of Enterobacter Cloacae And Citrobacter Freundii
Casin, I.; Bordon, F.; Bertin, P.et al.
1998 • In Antimicrobial Agents and Chemotherapy, 42 (2), p. 209-215
[en] Three clinical isolates, Enterobacter cloacae EC1562 and EC1563 and Citrobacter
freundii CFr564, displayed an aminoglycoside resistance profile evocative of
low-level 6'-N acetyltransferase type II [AAC(6')-II] production, which conferred
reduced susceptibility to gentamicin but not to amikacin or isepamicin.
Aminoglycoside acetyltransferase assays suggested the synthesis in the three
strains of an AAC(6') which acetylated amikacin practically as well as it
acetylated gentamicin in vitro. Both compounds, however, as well as isepamicin,
retained good bactericidal activity against the three strains. The aac genes were
borne by conjugative plasmids (pLMM562 and pLMM564 of ca. 100 kb and pLMM563 of
ca. 20 kb). By PCR mapping and nucleotide sequence analysis, an aac(6')-Ib gene
was found in each strain upstream of an ant(3")-I gene in a sulI-type integron.
The size of the AAC(6')-Ib variant encoded by pLMM562 and pLMM564, AAC(6')-Ib7,
was deduced to be 184 (or 177) amino acids long, whereas in pLMM563 a 21-bp
duplication allowing the recruitment of a start codon resulted in the translation
of a variant, AAC(6')-Ib8, of 196 amino acids, in agreement with size estimates
obtained by Western blot analysis. Both variants had at position 119 a serine
instead of the leucine typical for the AAC(6')-Ib variants conferring resistance
to amikacin. By using methods that predict the secondary structure, these two
amino acids appear to condition an alpha-helical structure within a putative
aminoglycoside binding domain of AAC(6')-Ib variants.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Casin, I.
Bordon, F.
Bertin, P.
Coutrot, A.
Podglajen, I.
Brasseur, Robert ; Université de Liège - ULiège > Gembloux Agro-Bio Tech
Collatz, E.
Language :
English
Title :
Aminoglycoside 6 '-N-Acetyltransferase Variants Of The Ib Type With Altered Substrate Profile In Clinical Isolates Of Enterobacter Cloacae And Citrobacter Freundii
Publication date :
1998
Journal title :
Antimicrobial Agents and Chemotherapy
ISSN :
0066-4804
eISSN :
1098-6596
Publisher :
American Society for Microbiology, Washington, United States - District of Columbia
Ausubel, F. M., F. Brent, R. E. Kingston, D. D. Moore, J. A. Smith, J. G. Seidman, K. Struhl. 1993. Current protocols in molecular biology. John Wiley & Sons, Inc., New York, N.Y.
Bissonnette, L., and P. H. Roy. 1992. Characterization of In0 of Pseudomonas aeruginosa plasmid pVS1, an ancestor of integrons of multiresistance plasmids and transposons of gram-negative bacteria. J. Bacteriol. 174:1248-1257.
Bordon-Pallier, F., and E. Collatz. 1992. Structural and functional analysis of naturally occurring variant of AAC(6′)-Ib and in vitro truncated derivatives. abstr. 440, p. 194. In Program and abstracts of 32nd Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington, D.C.
Bordon-Pallier, F. Unpublished results.
Bunny, K. L., R. M. Hall, and H. W. Stokes. 1995. New mobile gene cassettes containing an aminoglycoside resistance gene, aacA7, and a chloramphenicol resistance gene, catB3, in an integron in pBH301. Antimicrob. Agents Chemother. 39:686-693.
Collis, C. M., G. Grammatiticopoulos, J. Briton, H. W. Stokes, and R. M. Hall. 1993. Site specific insertion of gene cassettes into integrons. Mol. Microbiol. 9:41-52.
Collis, C. M., and R. M. Hall. 1992. Site-specific deletion and rearrangement of integron insert genes catalysed by the integron DNA integrase. J. Bacteriol. 174:1574-1585.
Costa, Y., M. Galimand, R. Leclercq, J. Duval, and P. Courvalin. 1993. Characterization of the chromosomal aac(6′)-Ii gene specific for Enterococcus faecium. Antimicrob. Agents Chemother. 37:1896-1903.
Davies, J., and D. I. Smith. 1978. Plasmid determined resistance to antimicrobial agents. Annu. Rev. Microbiol. 32:469-518.
Galimand, M., T. Lambert, G. Gerbaud, and P. Courvalin. 1993. Characterization of the aac(6′-Ib gene encoding an aminoglycoside 6′-N-acetyltransferase in Pseudomonas aeruginosa BM2656. Antimicrob. Agents Chemother. 37:1456-1462.
Gourgeon, C., and G. Delage. 1994. A self optimised prediction method for protein secondary structure prediction. Protein Eng. 7:157-164.
Gourgeon, C., and G. Delage. 1995. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci. 11:681-684.
Haas, M. J., and J. E. Dowding. 1975. Aminoglycoside-modifying enzymes. Methods Enzymol. 43:611-628.
Hall, R. M., and C. M. Collis. 1995. Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Mol. Microbiol. 15:593-600.
Hannecart-Pokorni, E., F. Depuydt, L. De Wit, E. Van Bossuyt, J. Content, and R. Vanhoof. 1997. Characterization of the 6′-N-aminoglycoside acetyltransferase gene aac(6′)-Il associated with a sulI-type integron. Antimicrob. Agents Chemother. 41:314-318.
Hsiang, M. W., T. J. White, and J. E. Davies. 1978. NH2-terminal sequence of the aminoglycoside acetyltransferase(3)-I mediated by plasmid RIP135. FEBS Lett. 92:97-99.
Jacoby, G. A., L. Sutton, L. Knobel, and P. Mammen. 1983. Properties of IncP-2 plasmids of Pseudomonas spp. Antimicrob. Agents Chemother. 24: 168-175.
Kado, C. I., and S. T. Liu. 1981. Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriol. 145:1365-1373.
Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685.
Lambert, T., G. Gerbaud, M. Galimand, and P. Courvalin. 1993. Characterization of Acinetobacter haemolyticus aac(6′)-Ig gene encoding an aminoglycoside 6′-N-acetyltransferase which modifies amikacin. Antimicrob. Agents Chemother. 37:2093-2100.
Lambert, T., G. Gerbaud, and P. Courvalin. 1994. Characterization of the chromosomal aac(6′)-Ij gene of Acinetobacter sp. 13 and the aac(6′)-Ih plasmid gene of Acinetobacter baumannii. Antimicrob. Agents Chemother. 38:1883-1889.
Lambert, T., M. C. Ploy, and P. Courvalin. 1994. A spontaneous point mutation in the aac(6′)-Ib′ gene results in altered substrate specificity of aminoglycoside 6′-N-acetyltransferase of a Pseudomonas fluorescens strain. FEMS Microbiol. Letters. 115:297-304.
Mabilat, C., J. Lourençao-Vital, S. Goussard, and P. Courvalin. 1992. A new example of physical linkage between Tn1 and Tn21: the antibiotic multiple-resistance region of plasmid pCFF04 encoding extended-spectrum β-lactamase TEM-3. Mol. Gen. Genet. 235:113-121.
Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
Martinez, E., and F. de la Cruz. 1990. Genetic elements involved in Tn21 site specific integration: a novel mechanism for the dissemination of antibiotic resistance genes. EMBO J. 9:1275-1281.
Martinez, E., and F. de la Cruz. 1988. Transposon Tn21 encodes a RecA-independent site-specific integration system. Mol. Gen. Genet. 211:320-325.
Miller, G. H., F. J. Sabatelli, L. Naples, R. S. Hare, and K. J Shaw. 1995. The changing nature of aminoglycoside resistance mechanisms and the role of isepamicin. A new broad-spectrum aminoglycoside. J. Chemother. 7:S31-S44.
Nobuta, K., M. E. Tolmasky, L. M. Crosa, and J. H. Crosa. 1988. Sequencing and expression of the 6′-N-acetyltransferase gene of transposon Tn1331 from Klebsiella pneumoniae. 3. Bacteriol. 170:3769-3773.
Ouellette, M., L. Bissonnette, and P. H. Roy. 1987. Precise insertion of antibiotic resistance determinants into Tn21-like transposons: nucleotide sequence of the OXA-1 β-lactamase gene. Proc. Natl. Acad. Sci. USA 84: 7378-7382.
Pemberton, J. M., and B. W. Holloway. 1972. Chromosome mapping in Pseudomonas aeruginosa. Genet. Res. 19:251-260.
Rather, P. N., H. Munayyer, P. A. Mann, R. S. Hare, G. H. Miller, and K. J. Shaw. 1992. Genetic analysis of bacterial acetyltransferases: identification of amino acids determining the specificities of the aminoglycosidc 6′-N-acetyltransferase Ib and IIa proteins. J. Bacteriol. 174:3196-3203.
Recchia, G. D., H. W. Stokes, and R. M. Hall. 1994. Characterization of specific and secondary recombination sites recognized by the integron integrase. Nucleic Acids Res. 22:2071-2078.
Schmidt, F. R. J., E. J. Nucken, and R. B. Henschke. 1989. Structure and function of hot spots providing signals for site-directed specific recombination and gene expression in Tn21 transposons. Mol. Microbiol. 3:1545-1555.
Shaw, K. J., R. S. Hare, F. J. Sabatelli, M. Rizzo, C. A. Cramer, L. Naples, S. Kocsi, H. Munayyer, P. Mann, G. H. Miller, L. Verbist, H. Van Landuyt, Y. Glupczynski, M. Catalano, and M. Wolo. 1991. Correlation between aminoglycoside resistance profiles and DNA hybridization of clinical isolates. Antimicrob. Agents Chemother. 35:2253-2261.
Shaw, K. J., C. A. Kramer, M. Rizzo, R. Mierzwa, K. Gewain, G. H. Miller, and R. S. Hare. 1989. Isolation, characterization, and DNA sequence analysis of an aac(6′)-II gene from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 33:2052-2062.
Shaw, K. J., P. N. Rather, R. S. Hare, and G. H. Miller. 1993. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol. Rev. 57:138-163.
Shaw, K. J., P. N. Rather, F. J. Sabatelli, P. Mann, H. Munayyer, R. Mierzwa, G. L. Petrikkos, R. S. Hare, G. H. Miller, P. Bennett, and P. Downey. 1992. Characterization of the chromosomal aac(6′)-Ic gene from Serratia marcescens. Antimicrob. Agents Chemother. 36:1447-1455.
Shimizu, K., T. Kumada, W. Hsieh, H. Chung, Y. Chong, R. S. Hare, G. H. Miller, F. J. Sabatelli, and J. Howard. 1985. Comparison of aminoglycoside resistance patterns in Japan, Formosa, and Korea, Chile, and the United States. Antimicrob. Agents Chemother. 28:282-288.
Stokes, H. W., and R. M. Hall. 1989. A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol. Microbiol. 3:1669-1683.
Tait, R., H. Rempel, R. L. Rodriguez, and C. I. Kado. 1985. The aminoglycoside-resistance operon of the plasmid pSa nucleotide sequence of the streptomycin-spectinomycin resistance gene. Gene 36:97-104.
Toriya, M., M. Sakakibara, K. Matsustita, and T. Morohoshi. 1992. Nucleotide sequence of aminoglycoside 6′-N-acetyltransferase [AAC(6′)] determinant from Serratia sp45. Chem. Pharm. Bull. 40:2473-2477.
Tran Van Nhieu, G., F. Bordon, and E. Collatz. 1992. Incidence of an aminoglycoside 6′-N-acetyltransferase, AAC (6′)-1b, in amikacin-resistant clinical isolates of gram-negative bacilli, as determined by DNA-DNA hybridization and immunoblotting. J. Med. Microbiol. 36:83-88.
Tran Van Nhieu, G., and E. Collatz. 1987. Primary structure of an aminoglycoside 6′-N-acetyltransferase, AAC(6′)-4, fused in vivo with the signal peptide of the Tn3-encoded β-lactamase. J. Bacteriol. 169:5708-5714.
Watanabe, T., C. Furuse, and S. Sakaizumi. 1968. Transduction of various R-factors by phage P22 in Salmonella typhimurium. J. Bacteriol. 96:1791-1795.
Wohlleben, W., W. Arnold, L. Bissonnette, A. Pelletier, A. Tangay, P. H. Roy, G. C. Gamboa, G. F. Barry, E. Aubert, J. Davies, and S. A. Kagan. 1989. On the evolution of Tn21-like multiresistance transposons: sequence analysis of the gene (aacC1) for gentamicin acetyltransferase-3-I (AAC(3)-I), another member of the Tn21-based expression cassette. Mol. Gen. Genet. 217:202-208.