[en] The vertebrate hypothalamic-pituitary axis (HP) is the main link between the central nervous system and endocrine system. Although several signal pathways and regulatory genes have been implicated in adenohypophysis ontogenesis, little is known about hypothalamic-neurohypophysial development or when the HP matures and becomes functional. To identify markers of the HP, we constructed subtractive cDNA libraries between adult zebrafish hypothalamus and pituitary. We identified previously published genes, ESTs and novel zebrafish genes, some of which were predicted by genomic database analysis. We also analyzed expression patterns of these genes and found that several are expressed in the embryonic and larval hypothalamus, neurohypophysis, and/or adenohypophysis. Expression at these stages makes these genes useful markers to study HP maturation and function.
Centre/Unité de recherche :
AFFISH-RC - Applied and Fundamental FISH Research Center - ULiège Giga-Development and Stem Cells - ULiège
Bentley P.J. Comparative Vertebrate Endocrinology (1998), Cambridge University Press
Cassimeris L. The oncoprotein 18/stathmin family of microtubule destabilizers. Curr. Opin. Cell. Biol. 14 (2002) 18-24
Chapman S.C., Sawitzke A.L., Campbell D.S., and Schoenwolf G.C. A three-dimensional atlas of pituitary gland development in the zebrafish. J. Comp. Neurol. 487 (2005) 428-440
Colbran R.J., and Brown A.M. Calcium/calmodulin-dependent protein kinase II and synaptic plasticity. Curr. Opin. Neurobiol. 14 (2004) 318-327
Covassin L., Amigo J.D., Suzuki K., Teplyuk V., Straubhaar J., and Lawson N.D. Global analysis of hematopoietic and vascular endothelial gene expression by tissue specific microarray profiling in zebrafish. Dev. Biol. 299 (2006) 551-562
Dasen J.S., and Rosenfeld M.G. Signaling and transcriptional mechanisms in pituitary development. Annu. Rev. Neurosci. 24 (2001) 327-355
Dores R.M., Lecaude S., Bauer D., and Danielson P.B. Analyzing the evolution of the opioid/orphanin gene family. Mass Spectrom. Rev. 21 (2002) 220-243
Engelmann M., Landgraf R., and Wotjak C.T. The hypothalamic-neurohypophysial system regulates the hypothalamic-pituitary-adrenal axis under stress: an old concept revisited. Front Neuroendocrinol. 25 (2004) 132-149
Gage P.J., Brinkmeier M.L., Scarlett L.M., Knapp L.T., Camper S.A., and Mahon K.A. The Ames dwarf gene, df, is required early in pituitary ontogeny for the extinction of Rpx transcription and initiation of lineage-specific cell proliferation. Mol. Endocrinol. 10 (1996) 1570-1581
Gracia-Navarro F., Castano J.P., Malagon M.M., Sanchez-Hormigo A., Luque R.M., Hickey G.J., Peinado J.R., Delgado E., and Martinez-Fuentes A.J. Research progress in the stimulatory inputs regulating growth hormone (GH) secretion. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 132 (2002) 141-150
Griffith L.C. Calcium/calmodulin-dependent protein kinase II: an unforgettable kinase. J. Neurosci. 24 (2004) 8391-8393
Hauptmann G., and Gerster T. Two-color whole-mount in situ hybridization to vertebrate and Drosophila embryos. Trends Genet. 10 (1994) 266
Herzog W., Zeng X., Lele Z., Sonntag C., Ting J.W., Chang C.Y., and Hammerschmidt M. Adenohypophysis formation in the zebrafish and its dependence on sonic hedgehog. Dev. Biol. 254 (2003) 36-49
Holthuis J.C., Jansen E.J., and Martens G.J. Secretogranin III is a sulfated protein undergoing proteolytic processing in the regulated secretory pathway. J. Biol. Chem. 271 (1996) 17755-17760
Holthuis J.C., and Martens G.J. The neuroendocrine proteins secretogranin II and III are regionally conserved and coordinately expressed with proopiomelanocortin in Xenopus intermediate pituitary. J. Neurochem. 66 (1996) 2248-2256
Hudmon A., and Schulman H. Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu. Rev. Biochem. 71 (2002) 473-510
Lassiter C.S., and Linney E. Embryonic expression and steroid regulation of brain aromatase cyp19a1b in zebrafish (Danio rerio). Zebrafish 4 (2007) 49-57
Lin Chang C., Roh J., Park J.I., Klein C., Cushman N., Haberberger R.V., and Hsu S.Y. Intermedin functions as a pituitary paracrine factor regulating prolactin release. Mol. Endocrinol. 19 (2005) 2824-2838
Liu R.Z., Sharma M.K., Sun Q., Thisse C., Thisse B., Denovan-Wright E.M., and Wright J.M. Retention of the duplicated cellular retinoic acid-binding protein 1 genes (crabp1a and crabp1b) in the zebrafish genome by subfunctionalization of tissue-specific expression. FEBS J. 272 (2005) 3561-3571
Lopez M., Nica G., Motte P., Martial J.A., Hammerschmidt M., and Muller M. Expression of the somatolactin beta gene during zebrafish embryonic development. Gene Expr. Patterns 6 (2005) 156-161
Miyata A., Arimura A., Dahl R.R., Minamino N., Uehara A., Jiang L., Culler M.D., and Coy D.H. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem. Biophys. Res. Commun. 164 (1989) 567-574
Miyata A., Jiang L., Dahl R.D., Kitada C., Kubo K., Fujino M., Minamino N., and Arimura A. Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem. Biophys. Res. Commun. 170 (1990) 643-648
Nica G., Herzog W., Sonntag C., and Hammerschmidt M. Zebrafish pit1 mutants lack three pituitary cell types and develop severe dwarfism. Mol. Endocrinol. 18 (2004) 1196-1209
Okada R., Yamamoto K., Ito Y., Chartrel N., Leprince J., Fournier A., Vaudry H., and Kikuyama S. Effects of pituitary adenylate cyclase-activating polypeptide, vasoactive intestinal polypeptide, and somatostatin on the release of thyrotropin from the bullfrog pituitary. Ann. NY Acad. Sci. 1070 (2006) 474-480
Petersen B., Buchfelder M., Fahlbusch R., and Adams E.F. Pituitary adenylate cyclase-activating polypeptide directly stimulates LH and FSH secretion by human pituitary gonadotrophinomas. Exp. Clin. Endocrinol. Diabetes 104 (1996) 250-255
Pogoda H.M., and Hammerschmidt M. Molecular genetics of pituitary development in zebrafish. Semin. Cell Dev. Biol. 18 (2007) 543-558
Pogoda H.M., von der Hardt S., Herzog W., Kramer C., Schwarz H., and Hammerschmidt M. The proneural gene ascl1a is required for endocrine differentiation and cell survival in the zebrafish adenohypophysis. Development 133 (2006) 1079-1089
Rawlings S.R., and Hezareh M. Pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP/vasoactive intestinal polypeptide receptors: actions on the anterior pituitary gland. Endocr. Rev. 17 (1996) 4-29
Schmidt R. Cell-adhesion molecules in memory formation. Behav. Brain Res. 66 (1995) 65-72
Schmidt R., Brysch W., Rother S., and Schlingensiepen K.H. Inhibition of memory consolidation after active avoidance conditioning by antisense intervention with ependymin gene expression. J. Neurochem. 65 (1995) 1465-1471
Sharma M.K., Denovan-Wright E.M., Boudreau M.E., and Wright J.M. A cellular retinoic acid-binding protein from zebrafish (Danio rerio): cDNA sequence, phylogenetic analysis, mRNA expression, and gene linkage mapping. Gene 311 (2003) 119-128
Shashoua V.E. Ependymin, a brain extracellular glycoprotein, and CNS plasticity. Ann. NY Acad. Sci. 627 (1991) 94-114
Thompson Haskell G., Maynard T.M., Shatzmiller R.A., and Lamantia A.S. Retinoic acid signaling at sites of plasticity in the mature central nervous system. J. Comp. Neurol. 452 (2002) 228-241
Unger J.L., and Glasgow E. Expression of isotocin-neurophysin mRNA in developing zebrafish. Gene Expr. Patterns 3 (2003) 105-108
Varga Z.M., Wegner J., and Westerfield M. Anterior movement of ventral diencephalic precursors separates the primordial eye field in the neural plate and requires cyclops. Development 126 (1999) 5533-5546
Wong A.O., Li W.S., Lee E.K., Leung M.Y., Tse L.Y., Chow B.K., Lin H.R., and Chang J.P. Pituitary adenylate cyclase activating polypeptide as a novel hypophysiotropic factor in fish. Biochem. Cell Biol. 78 (2000) 329-343
Yepes M., and Lawrence D.A. Neuroserpin: a selective inhibitor of tissue-type plasminogen activator in the central nervous system. Thromb. Haemost. 91 (2004) 457-464
Zetterstrom R.H., Lindqvist E., Mata de Urquiza A., Tomac A., Eriksson U., Perlmann T., and Olson L. Role of retinoids in the CNS: differential expression of retinoid binding proteins and receptors and evidence for presence of retinoic acid. Eur. J. Neurosci. 11 (1999) 407-416
Zetterstrom R.H., Simon A., Giacobini M.M., Eriksson U., and Olson L. Localization of cellular retinoid-binding proteins suggests specific roles for retinoids in the adult central nervous system. Neuroscience 62 (1994) 899-918
Zhou F.C., and Wei L.N. Expression of cellular retinoic acid-binding protein I is specific to neurons in adult transgenic mouse brain. Brain Res. Gene Expr. Patterns 1 (2001) 67-72
Zhou H., Jiang Y., Ko W.K., Li W., and Wong A.O. Paracrine regulation of growth hormone gene expression by gonadotrophin release in grass carp pituitary cells: functional implications, molecular mechanisms and signal transduction. J. Mol. Endocrinol. 34 (2005) 415-432
Zhu X., Lin C.R., Prefontaine G.G., Tollkuhn J., and Rosenfeld M.G. Genetic control of pituitary development and hypopituitarism. Curr. Opin. Genet. Dev. 15 (2005) 332-340