[en] Increasing evidence implicates interactions between Abeta-peptides and membrane
lipids in Alzheimer's disease. To gain insight into the potential role of the
free amino group of the N-terminus of Abeta29-42 fragment in these processes, we
have investigated the ability of Abeta29-42 unprotected and Abeta29-42
N-protected to interact with negatively-charged liposomes and have calculated the
interaction with membrane lipids by conformational analysis. Using vesicles
mimicking the composition of neuronal membranes, we show that both peptides have
a similar capacity to induce membrane fusion and permeabilization. The fusogenic
effect is related to the appearance of non-bilayer structures where isotropic
motions occur as shown by 31P and 2H NMR studies. The molecular modeling
calculations confirm the experimental observations and suggest that lipid
destabilization could be due to the ability of both peptides to adopt metastable
positions in the presence of lipids. In conclusion, the presence of a free or
protected (acetylated) amino group in the N-terminus of Abeta29-42 is therefore
probably not crucial for destabilizing properties of the C-terminal fragment of
Abeta peptides.
Allen T.M., Cleland L.G. Serum-induced leakage of liposome contents. Biochim. Biophys. Acta. 597:1980;418-426.
Ansell, Hawthorne, 1964. Phospholipids - Chemistry, Metabolism and Function. Phospholipids and the Nervous System. Elsevier, Amsterdam, pp. 278-372.
Arispe N., Pollard H.B., Rojas E. Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein (A-betaP(1-40)) in bilayer membranes. Proc. Natl. Acad. Sci. USA. 90:1993;10573-10577.
Arispe N., Rojas E., Pollard H.B. Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminium. Proc. Natl. Acad. Sci. USA. 90:1993;567-571.
Avdulov N.A., Chochina S.V., Igbavboa U., O'Hare E.O., Schroeder F., Cleary J.P., Wood W.G. Amyloid beta-peptides increase annular and bulk fluidity and induce lipid peroxidation in brain synaptic plasma membranes. J. Neurochem. 68:1997;2086-2091.
Bartlett G.R. Phosphorus assay in column chromatography. J. Biol. Chem. 234:1959;466-468.
Beuve-Mery D., Rahman M., Ducarme P., Brasseur R. Practical aspects of computational chemistry calculations through PC networks: the RAMSES-Beowulf implementation. J. Comput. Chem. 22:2001;172-177.
Bradshaw J.P., Darkes M.J.M., Katsaras J., Epand R.M. Neutron diffraction studies of viral peptides. Physica B. 276:2000;495-498.
Brasseur R. TAMMO: theoretical analysis of membrane molecular organization. Brasseur R., Molecular Description of Biological Membrane Components by Computer-aided Conformational Analysis. 1990;203-219 CRC Press, Boca Raton, FL.
Brasseur R. Differentiation of lipid-associating helices by use of three-dimensional molecular hydrophobicity potential calculations. J. Biol. Chem. 266:1991;16120-16127.
Brasseur R. Tilted peptides: a motif for membrane destabilization (hypothesis). Mol. Memb. Biol. 17:2000;31-40.
Brasseur R., Lins L., Vanloo B., Ruysschaert J.M., Rosseneu M. Molecular modelling of the amphipathic helices of the plasma apolipoproteins. Proteins: Struct. Funct. Genet. 13:1992;246-257.
Brasseur R., Pillot T., Lins L., Vandekerckhove J., Rosseneu M. Peptides in membranes: tipping the balance of membrane stability. Trends Biochem. Sci. 22:1997;167-171.
Casal C., Serratosa J., Tusell J.M. Relationship between β-AP peptide aggregation and microglial activation. Brain Res. 928:2002;76-84.
Chaney M.O., Webster S.D., Kuo Y.M., Roher A.E. Molecular modeling of the A beta 1-42 peptide from Alzheimer's disease. Protein Eng. 11:1998;761-767.
Choo-Smith L.P., Surewicz W.K. The interaction between Alzheimer amyloid beta(1-40) peptide and ganglioside GM1-containing membranes. FEBS Lett. 402:1997;95-98.
Christie R.H., Chung H., Rebeck G.W., Strickland D., Hyma B.T. Expression of the very low-density lipoprotein receptor (VLDL-r), an apolipoprotein-E receptor, in the central nervous system and in Alzheimer's disease. J. Neuropathol. Exp. Neurol. 55:1996;491-498.
Coles M., Bicknell W., Watson A.A., Fairlie D.P., Craik D.J. Cholesterol modulates the membrane-disordering effects of beta-amyloid peptides in the hippocampus: specific changes in Alzheimer's disease. Biochemistry (US). 37:1998;11064-11077.
Cribbs D.H., Pike C.J., Weinstein S.L., Velazquez P., Cotman C.W. All-D-enantionmers of beta-amyloid exhibit similar biological properties to all-L-beta-amyloids. J. Biol. Chem. 272:1997;7431-7436.
Davis J.H. The description of membrane lipid conformation, order and dynamics by 2H NMR. Biochim. Biophys. Acta. 737:1983;117-171.
Decout A., Labeur C., Goethals M., Brasseur R., Vandekerckhove J., Rosseneu M. Enhanced efficiency of a targeted fusogenic peptide. Biochim. Biophys. Acta. 1372:1998;102-116.
Defrise-Quertain F., Cabiaux V., Vandenbranden M., Wattiez R., Falmagne P., Ruysschaert J.M. pH-Dependent bilayer destabilization and fusion of phospholipidic large unilamellar vesicles induced by Diphtheria toxin and its fragments A and B. Biochemistry (US). 28:1989;3406-3413.
De Kruijff B., Verkleij A.J., van Echteld C.J.A., Gerritsen W.J., Mombers C., Noordam P.C., de Gier J. The occurrence of lipidic particles in lipid bilayers as seen by 31P NMR and freeze-fracture electron microscopy. Biochim. Biophys. Acta. 555:1979;200-209.
Demeester N., Baier G., Enzinger C., Goethals M., Vandekerckhove J., Rosseneu M., Labeur C. Apoptosis induced in neuronal cells by C-terminal amyloid beta-fragments is correlated with their aggregation properties in phospholipid membranes. Mol. Membr. Biol. 17:2000;219-228.
Dempsey C.E. The actions of melittin on membranes. Biochim. Biophys. Acta. 1031:1990;143-161.
Ducarme Ph., Rahman M., Brasseur R. IMPALA: a simple restraint field to simulate the biological membrane in molecular structure studies. Proteins: Struct. Funct. Genet. 30:1998;357-371.
Eckert G.P., Cairns N.J., Maras A., Gattaz W.F., Muller W.E. Cholesterol modulates the membrane-disordering effects of beta-amyloid peptides in the hippocampus: specific changes in Alzheimer's disease. Dementia Geriatr. Cognitive Disord. 11:2000;181-186.
Epand R.F., Cheetham J., Yeagle P.L., Richardson C.D., DeGrado W.F. Peptide models for the membrane destabilizing actions of viral fusion protein. Biopolymers. 32:1992;309-314.
Ferreras M., Hoper F., Dalla Serra M., Colin D.A., Prévost G., Menestrina G. The interaction of Staphylococcus aureus bi-component gamma-hemolysins and leucocidins with cells and lipid membranes. Biochem. Biophys. Acta. 1414:1998;108-126.
Hara M., Yuan H., Yang Q., Hoshino T., Yokoyama A., Miyake J. Stabilization of liposomal membranes by thermozeaxanthins:carotenoid-glucide esters. Biochim. Biophys. Acta. 1461:1999;147-154.
Hardy J. The Alzheimer family of diseases: many etiologies, one pathogenesis? Proc. Natl. Acad. Sci. USA. 94:1997;2095-2097.
Hartmann T., Beiger S.C., Bruhl B., Tienari P.J., Ida N., Allsop D., Roberts G.W., Masters C.L., Beyreuther K. Distinct sites of intracellular production for Alzheimer's disease A beta 40/42 amyloid peptides. Nat. Med. 3:1997;1016-1020.
Hertel C., Terzi E., Hauser N., Jakob-Roetne R., Seelig J., Kemp J.A. Inhibition of the electrostatic interaction between beta-amyloid peptide and membranes prevents beta-amyloid-induced toxicity. Proc. Natl. Acad. Sci. USA. 94:1997;9412-9416.
Hoekstra D., de Boer T., Klappe K., Wilschut J. Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry (US). 23:1984;5675-5681.
Horth M., Lambrecht B., Chuah Lay Khim M., Bex F., Clothilde C., Ruysschaert J.-M., Burny A., Brasseur R. Theoretical and functional analysis of the SIV fusion peptide. EMBO J. 10:1991;2747-2755.
Jao Sh-Ch., Ma K., Talafous J., Orlando R., Zagorski M.G. Trifluoroacetic acid pretreatment reproducibly disaggregates the amyloid beta-peptide. Int. J. Exp. Clin. Invest. 4:1997;240-252.
Jarrett J.T., Berger E.P., Lansbury P.T. Jr. The carboxy terminus of the beta-amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry (US). 32:1993;4693-4697.
Ji S.-R., Wu Y., Sui S.-F. Cholesterol is an important factor affecting the membrane insertion of β-amyloid peptide (Aβ1-40), which may potentially inhibit the fibril formation. J. Med. Chem. 277:2002;6273-6279.
Kaiser R.D., London E. Location of diphenylhexatriene (DPH) and its derivatives within membranes: comparison of different fluorescence quenching analyses of membrane depth. Biochemistry (US). 37:1998;8180-8190.
Kang J., Lemaire H.G., Unterbeck A., Salbaum J.M., Masters C.L., Grzeschik K.H., Multhaup G., Beyreuther K., Muller-Hill B. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature. 325:1987;733-736.
Kitagawa S., Matsubayashi M., Kotani K., Usui K., Kametani F. Asymetry of membrane fluidity in the lipid bilayer of blood platelets: fluorescence study with diphenylhexatriene and analogs. J. Membr. Biol. 119:1991;221-227.
Kremer J.J., Pallitto M.M., Sklansky D.J., Murphy R.M. Correlation of a-amyloid aggregate size and hydrophobicity with decreased bilayer fluidity of model membranes. Biochemistry (US). 39:2000;10309-10318.
Kremer J.J., Sklansky D.J., Murphy R.M. Profile of changes in lipid bilayer structure caused by beta-amyloid peptide. Biochemistry (US). 40:2001;8563-8571.
Lansbury P.T., Jarrett J.T., Berger E.P. Hot papers - neurochemistry - the carboxy terminus of the beta-amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Scientist. 9:1995;15.
Lelkes, P.I., 1984. Methodological aspects dealing with stability measurements of liposomes in vitro using the carboxyfluorescein assay. In: Gregoriadis (Ed.), Liposome Technology, Vol. 3. CRC Press, Boca Raton, FL, pp. 225-246.
Lins L., Charloteaux B., Thomas A., Brasseur R. Computational study of lipid-destabilizing protein fragments: towards a comprehensive view of tilted peptides. Proteins: Struct. Funct. Genet. 44:2001;435-447.
Martin I., Dubois M.C., Defrise-Quertain T., Saermark A., Burny A., Brasseur R., Ruysschaert J.M. Correlation between fusogenicity of synthetic modified peptides corresponding to the NH2-terminal extremity of simian immunodeficiency virus gp32 and their mode of insertion into the lipid bilayer: an infrared spectroscopy study. Virology. 68:1994;1139-1148.
Mason R.P., Estermyer J.D., Kelly J.F., Mason P.E. Alzheimer's disease amyloid beta-peptide 25-35 is localized in the membrane hydrocarbon core: X-ray diffraction analysis. Biochem. Biophys. Res. Commun. 222:1996;78-82.
Mason R.P., Jacob R.F., Walter M.F., Mason P.E., Avdulov N.A., Chochina S.V., Igbavboa U., Wood W.G. Distribution and fluidizing action of soluble and aggregated amyloid beta-peptide in rat synaptic plasma membranes. J. Biol. Chem. 274:1999;18801-18807.
Matsuzaki K., Horikiri Ch. Interactions of amyloid beta-peptide (1-40) with ganglioside-containing membranes. Biochemistry (US). 38:1999;4137-4142.
Mazer N.A., Carey M.C., Kwasnick R.F., Benedek G.B. Quasielastic light scattering studies of aqueous biliary lipid systems: size, shape and thermodynamics of bile salt micelles. Biochemistry (US). 18:1979;3064-3075.
McLaurin J., Chakrabartty A. Membrane disruption by Alzheimer beta-amyloid peptides mediated through specific binding to either phospholipids or gangliosides. J. Biol. Chem. 271:1996;26482-26489.
McLaurin J.A., Chakrabartty A. Characterization of the interactions of Alzheimer beta-amyloid peptides with phospholipid membranes. Eur. J. Biochem. 245:1997;355-363.
McLaurin J., Franklin T., Chakrabartty A., Fraser P.E. Phosphatidylinositol and inositol involvement in Alzheimer amyloid-beta fibril growth and arrest. J. Mol. Biol. 278:1998;183-194.
McLaurin J., Franklin T., Fraser P.E., Chakrabartty A. Structural transitions associated with the interaction of Alzheimer beta-amyloid peptides with gangliosides. J. Biol. Chem. 273:1998;4506-4615.
Mingeot-Leclercq M.P., Piret J., Brasseur R., Tulkens P.M. Effect of acidic phospholipids on the activity of lysosomal phospholipases and on their inhibition by aminoglycoside antibiotics. I. Biochemical analysis. Biochem. Pharmacol. 40:1990;489-497.
Mingeot-Leclercq M.-P., Gallet X., Flore C., Van Bambeke F., Peuvot J., Brasseur R. Experimental and conformational analyses of interactions between butenafine and lipids. Antimicrob. Agents Chemother. 45:2001;3347-3354.
Müller W.E., Koch S., Eckert A., Hartmann H., Scheuer K. Beta-amyloid peptide decreases membrane fluidity. Brain. Res. 674:1995;133-136.
Müller W.E., Eckert G.P., Scheuer K., Cairns N.J., Maras A., Gattaz W.F. Effects of beta-amyloid peptides on the fluidity of membranes from frontal and parietal lobes of human brain: high potencies of A beta 1-42 and A beta 1-43. Amyloid Int. J. Exp. Clin. Invest. 5:1998;10-15.
Norton W.T., Toshiaki A., Poduslo S.E., DeVries G.H. The lipid composition of isolated brain cells and axons. J. Neurosci. Res. 1:1975;57-75.
Orpiszewski J., Benson M.D. Induction of beta-sheet structure in amyloidogenic peptides by neutralization of aspartate: a model for amyloid nucleation. J. Mol. Biol. 289:1999;413-428.
Peuvot J., Schanck A., Lins L., Brasseur R. Are the fusion processes involved in birth, life and death of the cell depending on tilted insertion of peptides into membranes? J. Theoret. Biol. 198:1999;173-181.
Pillot T., Goethals M., Vanloo B., Talussot C., Brasseur R., Vandekerckhove J., Rosseneu M. Fusogenic properties of the C-terminal domain of the Alzheimer beta-amyloid peptide. J. Biol. Chem. 271:1996;28757-28765.
Pillot Th., Drouet B., Queillé S., Labeur Ch., Vandekerckhove J., Rosseneu M., PinRon-Raymond M., Chambaz J. The nonfibrillar amyloid beta-peptide induces apoptotic neuronal cell death: involvement of its C-terminal fusogenic domain. J. Neurochem. 73:1999;1626-1634.
Prenner E.J., Lewis R.N.A., Jelokhani-Niaraki M., Hodges R.S., McElhaney R.N. Cholesterol attenuates the interaction of the antimicrobial peptide gramicidin S with phospholipid bilayer membranes. Biochem. Biophys. Acta. 1510:2001;83-92.
Rhee S.K., Quist A.P., Lal R. Amyloid beta protein-(1-42) forms calcium-permeable, Zn2+-sensitive channel. J. Biol. Chem. 273:1998;13379-13382.
Sanders C.R., Landis G.C. Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. Biochemistry (US). 34:1995;4030-4040.
Sanders C.R., Schwonek J.P. Characterization of magnetically orientable bilayers in mixtures of dihexanoylphosphatidylcholine and dimyristoylphosphatidylcholine by solid-state NMR. Biochemistry (US). 31:1992;8898-8905.
Schanck A., Brasseur R., Peuvot J. Destabilisation of a model membrane by a predicted fusion peptide of fertilin. J. Chim. Phys. 95:1998;467-473.
Schanck A., Peuvot J., Brasseur R. Influence of the mode of insertion of SIV peptides into membranes on the structure of model membrane as studied by P-31 NMR. Biochem. Biophys. Res. Commun. 250:1998;12-14.
Scheuer K., Maras A., Gattaz W.F., Cairns N., Forstl H., Muller W.E. Cortical NMDA receptor properties and membrane fluidity are altered in Alzheimer's disease. Dementia. 7:1996;210-214.
Seelig J. 31P nuclear magnetic resonance and the head group structure of phospholipids in membranes. Biochem. Biophys. Acta. 515:1978;105-140.
Selkoe D.J. Physiological production of the beta-amyloid protein and the mechanism of Alzheimer's disease. Trends Neurosci. 16:1993;403-409.
Selkoe D.J. Cell biology of the amyloid a-protein precursor and the mechanism of Alzheimer's disease. Ann. Rev. Cell. Biol. 10:1994;373-403.
Selkoe D.J. Alzheimer's disease: genotypes, phenotypes, and treatments. Science. 275:1997;630-631.
Selkoe D.J. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature. 399:1999;A23-A31.
Seubert P., Vigo-Pelfrey C., Esch F., Lee M., Dovey H., Davis D., Sinha S., Schlossmacher M., Swindlehurst C. Isolation and quantification of soluble Alzheimer's beta-peptide from biological fluids. Nature. 359:1992;325-327.
Sinha S., Lieberburg I. Cellular mechanisms of beta-amyloid production and secretion. Proc. Natl. Acad. Sci. USA. 96:1999;11049-11053.
Terzi E., Hölzemann G., Seelig J. Self-association of beta-amyloid peptide (1-40) in solution and binding to lipid membranes. J. Mol. Biol. 252:1995;633-642.
Terzi E., Hölzemann G., Seelig J. Interaction of Alzheimer beta-amyloid peptide(1-40) with lipid membranes. Biochemistry (US). 36:1997;14845-14852.
Van Bambeke F., Mingeot-Leclercq M.P., Schanck A., Brasseur R., Tulkens P.M. Alterations in membrane permeability induced by aminoglycoside antibiotics: studies on liposomes and cultured cells. Eur. J. Pharmacol. 247:1993;155-168.
Van Bambeke F., Tulkens P.M., Brasseur R., Mingeot-Leclercq M.P. Aminoglycoside antibiotics induce aggregation but not fusion of negatively charged liposomes. Eur. J. Pharmacol. 289:1995;321-333.
Van Bambeke F., Kerkhofs A., Schanck A., Remacle C., Sonveaux E., Tulkens P.M., Mingeot-Leclercq M.P. Biophysical studies and intracellular destabilization of pH-sensitive liposomes. Lipids. 35:2000;213-223.
Weinstein J.N., Yoshikami S., Henkart P., Blumenthal R., Hagins W.A. Liposome-cell interaction: transfer and intracellular release of a trapped fluorescent marker. Science. 195:1977;489-491.
Wood S.J., Maleeff B., Hart T., Wetzel R. Physical, morphological and functional differences between pH 5.8 and 7.4 aggregates of the Alzheimer's amyloid peptide AP. J. Mol. Biol. 256:1996;870-877.
Yang A.J., Chandswangbhuvana D., Margol L., Glabe C.G. Loss of endosomal/lysosomal membrane impermeability is an early event in amyloid A beta 1-42 pathogenesis. J. Neurosci. Res. 52:1998;691-698.
Yeagle P.L., Epand R.M., Richardson C.D., Flanagan T.D. Effects of the 'fusion peptide' from measles virus on the structure of N-methyl dioleoylphosphatidylethanolamine membranes and their fusion with Sendai virus. Biochim. Biophys. Acta. 1065:1991;49-53.
Zubenko G.S., Kopp U., Seto T., Firestone L.L. Platelet membrane fluidity individuals at risk for Alzheimer's disease: a comparison of results from fluorescence spectroscopy and electron spin resonance spectroscopy. Psychopharmacology. 145:1999;175-180.