Cell Handling, Membrane-Binding Properties, And Membrane-Penetration Modeling Approaches Of Pivampicillin And Phthalimidomethylampicillin, Two Basic Esters Of Ampicillin, In Comparison With Chloroquine And Azithromycin
[en] PURPOSE: The purpose of this work was to examine and understand the cellular
pharmacokinetics of two basic esters of ampicillin, pivaloyloxymethyl (PIVA) and
phthalimidomethyl (PIMA), in comparison with lysosomotropic drugs (chloroquine,
azithromycin). METHODS: Cell culture studies (J774 macrophages) were undertaken
to study uptake and release kinetics and to assess the influence of
concentration, pH, proton ionophore (monensin), and MRP and P-gp inhibitors
(probenecid, gemfibrozil, cyclosporin A, GF 120918). Equilibrium dialysis with
liposomes were performed to directly asses the extent of drug binding to
bilayers. Conformational analysis modeling of the drug penetration in bilayers
was conducted to rationalize the experimental observations. RESULTS: PIVA and
PIMA showed properties in almost complete contrast with those of chloroquine and
azithromycin, i.e., fast apparent accumulation and fast release at 4 degrees C as
well as at 37 degrees C, saturation of uptake (apparent Kd 40 microM), no
influence of monensin, MRP, or P-gp inhibitors; tight binding to liposomes (Kd
approx. 40 microM); and sharp increase in calculated free energy when forced in
the hydrophobic domain. CONCLUSIONS: Although they are weak organic bases, PIVA
and PIMA show none of the properties of lysosomotropic agents. We hypothesize
that they remain locked onto the pericellular membrane and may never penetrate
cells as such in significant amounts.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Chanteux, H.
Paternotte, I.
Mingeot-Leclercq, Marie-Paule
Brasseur, Robert ; Université de Liège - ULiège > Gembloux Agro-Bio Tech
Sonveaux, E.
Tulkens, Pm.
Language :
English
Title :
Cell Handling, Membrane-Binding Properties, And Membrane-Penetration Modeling Approaches Of Pivampicillin And Phthalimidomethylampicillin, Two Basic Esters Of Ampicillin, In Comparison With Chloroquine And Azithromycin
Publication date :
2003
Journal title :
Pharmaceutical Research
ISSN :
0724-8741
eISSN :
1573-904X
Publisher :
Kluwer Academic/Plenum Publishers, New York, United States - New York
D. E. Nix, S. D. Goodwin, C. A. Peloquin, D. L. Rotella, and J. J. Schentag. Antibiotic tissue penetration and its relevance: models of tissue penetration and their meaning. Antimicrob. Agents Chemother. 35:1947-1952 (1991).
J. M. Ghuysen, J. M. Frère, and M. Leyh-Bouille. The D-alanyl-D-Ala peptidases. Mechanism of action of penicillins and delta-3-cephalosporins. In M. Salton and G. D. Shockman (eds.), Betalactam Antibiotics: Mode of Action, New Development, and Future Prospects, Academic Press, Inc., New York, 1981 pp. 127-152.
J. M. Ghuysen. Serine beta-lactamases and penicillin-binding proteins. Annu. Rev. Microbiol. 45:37-67 (1991).
M. D. Milne, B. H. Scribner, and M. A. Crawford. Nonionic diffusion and the excretion of weak acids and bases. Am. J. Med. 24:709-729 (1958).
C. Renard, H. J. Vanderhaeghe, P. J. Claes, A. Zenebergh, and P. M. Tulkens. Influence of conversion of penicillin G into a basic derivative on its accumulation and subcellular localization in cultured macrophages. Antimicrob. Agents Chemother. 31:410-416 (1987).
W. von Daehne, E. Frederiksen, E. Gudersen, F. Lund, P. Moerch, H. Petersen, K. Roholt, L. Tybring, and W. O. Godfredsen. Acyloxymethyl esters of ampicillin. J. Med. Chem. 13:607-612 (1970).
H. J. Fan, I. Paternotte, M. Vermander, K. Li, M. Beaujean, B. Scorneaux, P. Dumont, P. Osinski, M. Claesen, P. M. Tulkens, and E. Sonveaux. Ester prodrugs of ampicillin tailored for intracellular accumulation. Bioorg. Med. Chem. Lett. 7:3107-3112 (1997).
I. Paternotte, H. J. Fan, P. Screve, M. Claesen, P. M. Tulkens, and E. Sonveaux. Syntheses and hydrolysis of basic and dibasic ampicillin esters tailored for intracellular accumulation. Bioorg. Med. Chem. 9:493-502 (2001).
C. de Duve, T. de Barsy, B. Poole, A. Trouet, P. Tulkens, and F. Van Hoof. Commentary. Lysosomotropic agents. Biochem. Pharmacol. 23:2495-2531 (1974).
S. Djokic, G. Kobrehel, and G. Lazarevski. Erythromycin series. XII. Antibacterial in vitro evaluation of 10- dihydro-10-deoxo-11-azaerythromycin A: synthesis and structure-activity relationship of its acyl derivatives. J. Antibiot. 40:1006-1015 (1987).
M. Wibo and B. Poole. Protein degradation in cultured cells. II. The uptake of chloroquine by rat fibroblasts and the inhibition of cellular protein degradation and cathepsin B1. J. Cell Biol. 63:430-440 (1974).
M. B. Carlier, I. Garcia-Luque, J. P. Montenez, and P. M. Tulkens, and J. Piret. Accumulation, release and subcellular localization of azithromycin in phagocytic and non-phagocytic cells in culture. Int. J. Tissue React. 16:211-220 (1994).
W. J. Jusko. Fluorometric analysis of ampicillin in biological fluids. J. Pharm. Sci. 60:728-732 (1971).
OECD guideline for testing of chemicals. OECD Partition coefficient (n-octanol/water), High Performance Liquid Chromatography (HPLC) method. 2001. http://www.oecd.org/pdf/M00023000/M00023731.pdf.
A. Paschke, M. Manz, and G. Schuurmann. Application of different RP-HPLC methods for the determination of the octanol/water partition coefficient of selected tetrachlorobenzyltoluenes. Chemosphere 45:721-728 (2001).
P. Ducarme, M. Rahman, and R. Brasseur. IMPALA: a simple restraint field to simulate the biological membrane in molecular structure studies. Proteins 30:357-371 (1998).
L. Lins, B. Charloteaux, A. Thomas, and R. Brasseur. Computational study of lipid-destabilizing protein fragments: towards a comprehensive view of tilted peptides. Proteins 44:435-447 (2001).
M. O. Boles and R. J. Girven. The structures of ampicillin: a comparison of the anhydrate and trihydrate forms. Acta Cryst. B32:2279-2284 (1976).
G. M. Sheldrick, B. Kojic-Prodic, Z. Banic, G. Kobrehel, and N. Kujundzic. Structure of 9-Deoxo-9a-N-[N′-(4-pyridyl)-carbamoyl]-9a-aza-9a-homoerythromycin A and conformational analysis of analogous 9a-aza 15-membered azalides in the solid state. Acta Cryst. B51:358-366 (1995).
H. Sun, D. W. Miller, and W. F. Elmquist. Effect of probenecid on fluorescein transport in the central nervous system using in vitro and in vivo models. Pharm. Res. 18:1542-1549 (2001).
D. E. Rudin, P. X. Gao, C. X. Cao, H. C. Neu, and S. C. Silverstein. Gemfibrozil enhances the listeriacidal effects of fluoroquinolone antibiotics in J774 macrophages. J. Exp. Med. 176:1439-1447 (1992).
P. W. Wigler and F. K. Patterson. Reversal agent inhibition of the multidrug resistance pump in human leukemic lymphoblasts. Biochim. Biophys. Acta 1189:1-6 1994).
F. Hyafil, C. Vergely, V. P. Du, and T. Grand-Perret. In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res. 53:4595-4602 (1993).
C. Seral, J.-M. Michot, H. Chanteux, M. P. Mingeot-Leclercq, and P. M. Tulkens. Influence of P-glycoprotein Inhibitors on the accumulation of macrolides in J774 murine macrophages. Antimicrob. Agents Chemother. 47:1047-1057 (2003).
F. Van Bambeke, E. Balzi, and P. M. Tulkens. Antibiotic efflux pumps. Biochem. Pharmacol. 60:457-470 (2000).
J. P. Montenez, F. Van Bambeke, J. Piret, A. Schanck, R. Brasseur, P. M. Tulkens, and M. P. Mingeot-Leclercq. Interaction of the macrolide azithromycin with phospholipids. II. Biophysical and computer-aided conformational studies. Eur. J. Pharmacol. 314:215-227 (1996).
E. L. Foltz, J. W. West, I. H. Breslow, and H. Wallick. Clinical pharmacology of pivampicillin. Antimicrobial. Agents Chemother. 10:442-454 (1970).
E. R. Hultberg and B. Backelin. Studies on the absorption of pivampicillin and ampicillin. Scand. J. Infect. Dis. 4:149-153 (1972).
H. Heerklotz. Membrane stress and permeabilization induced by asymmetric incorporation of compounds. Biophys. J. 81:184-195 (2001).
R. P. Mason, D. G. Rhodes, and L. G. Herbette. Reevaluating equilibrium and kinetic binding parameters for lipophilic drugs based on a structural model for drug interaction with biological membranes. J. Med. Chem. 34:869-877 (1991).
I. Rubio-Aliaga and H. Daniel. Mammalian peptide transporters as targets for drug delivery. Trends Pharmacol. Sci. 23:434-440 (2002).
B. Bretschneider, M. Brandsch, and R. Neubert. Intestinal transport of beta-lactam antibiotics: analysis of the affinity at the H+/peptide symporter (PEPT1), the uptake into Caco-2 cell monolayers and the transepithelial flux. Pharm. Res. 16:55-61 (1999).
V. Ferrari and D. J. Cutler. Kinetics and thermodynamics of chloroquine and hydroxychloroquine transport across the human erythrocyte membrane. Biochem. Pharmacol. 41:23-30 (1991).