Transferrin-Binding Protein B Of Neisseria Meningitidis: Sequence-Based Identification Of The Transferrin-Binding Site Confirmed By Site-Directed Mutagenesis
[en] A sequence-based prediction method was employed to identify three ligand-binding
domains in transferrin-binding protein B (TbpB) of Neisseria meningitidis strain
B16B6. Site-directed mutagenesis of residues located in these domains has led to
the identification of two domains, amino acids 53 to 57 and 240 to 245, which are
involved in binding to human transferrin (htf). These two domains are conserved
in an alignment of different TbpB sequences from N. meningitidis and Neisseria
gonorrhoeae, indicating a general functional role of the domains. Western blot
analysis and BIAcore and isothermal titration calorimetry experiments
demonstrated that site-directed mutations in both binding domains led to a
decrease or abolition of htf binding. Analysis of mutated proteins by circular
dichroism did not provide any evidence for structural alterations due to the
amino acid replacements. The TbpB mutant R243N was devoid of any htf-binding
activity, and antibodies elicited by the mutant showed strong bactericidal
activity against the homologous strain, as well as against several heterologous
tbpB isotype I strains.
Brasseur, Robert ; Université de Liège - ULiège > Gembloux Agro-Bio Tech
Lissolo, L.
Language :
English
Title :
Transferrin-Binding Protein B Of Neisseria Meningitidis: Sequence-Based Identification Of The Transferrin-Binding Site Confirmed By Site-Directed Mutagenesis
Publication date :
2004
Journal title :
Journal of Bacteriology
ISSN :
0021-9193
eISSN :
1098-5530
Publisher :
American Society for Microbiology, Washington, United States - District of Columbia
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Boulton, I. C., A. R. Gorringe, R. J. Carr, B. Gorinsky, C. L. Joannou, and R. W. Evans. 1997. Characterisation of the meningococcal transferrin-binding protein complex by photon correlation spectroscopy. FEBS Lett. 414:409-413.
Caugant, D. A., L. O. Froholm, K. Bovre, E. Holten, C. E. Frasch, L. F. Mocca, W. D. Zollinger, and R. K. Selander. 1986. Intercontinental spread of a genetically distinctive complex of clones of Neisseria menigitidis causing epidemic disease. Proc. Natl. Acad. Sci. USA 83:4927-4931.
Combet, C., C. Blanchet, C. Geourjon, and G. Deléage. 2000. NPS@: Network Protein Sequence Analysis. Trends Biochem. Sci. 25:147-150.
Cornelissen, C. N., J. E. Anderson, and P. F. Sparling. 1997. Characterization of the diversity and the transferrin-binding domain of gonococcal transferrin-binding protein 2. Infect. Immun. 65:822-828.
Danve, B., L. Lissolo, M. Mignon, P. Dumas, S. Colombani, A. B. Schryvers, and M.-J. Quentin-Millet. 1993. Transferrin-binding proteins isolated from Neisseria meningitidis elicit protective and bactericidal antibodies in laboratory animals. Vaccine 11:1214-1220.
De Loof, H., M. Rossenau, R. Brasseur, and J. M. Ruysschaert. 1986. Use of hydrophobicity profiles to predict receptor binding domains on apolipoprotein E and the low-density lipoprotein apolipoprotein B-E receptor. Proc. Natl. Acad. Sci. USA 83:2295-2299.
Eisenberg, D., R. M. Weiss, and T. C. Terwilliger. 1982. The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature 299:371-374.
Eisenberg, D., E. Schwarz, M. Komaromy, and R. Wall. 1984. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 179:125-142.
Fuller, C. A., R. Yu, S. W. Irwin, and A. B. Schryvers. 1998. Biochemical evidence for a conserved interaction between bacterial transferrin-binding protein A and transferrin-binding protein B. Microb. Pathog. 24:75-87.
Gallet, X., B. Charloteaux, A. Thomas, and R. Brasseur. 2000. A fast method to predict Protein interaction sites from sequences. J. Mol. Biol. 302:917-926.
Gray-Owen, S. D., and A. B. Schryvers. 1996. Bacterial transferrin and lactoferrin receptors. Trends Microbiol. 14:843-850.
Holdgate, G. A. 2001. Making cool drugs hot: the use of isothermal titration calorimetry as a tool to study binding energetics. BioTechniques 31:164-184.
Krell, T., G. Renauld-Mongenie, M.-C. Nicolai, S. Fraysse, M. Chevalier, Y. Berard, J. Oakhill, R. W. Evans, A. Gorringe, and L. Lissolo. 2003. Insight into the structure and function of the transferrin receptor from Neisseria meningitidis using microcalorimetric techniques. J. Biol. Chem. 278:14712-14722.
Legrain, M., V. Mazariu, S. W. Irwin, B. Bouchon, M.-J. Quentin-Millet, E. Jacobs, and A. B. Schryvers. 1993. Cloning and characterization of Neisseria meningitidis genes encoding the transferrin-binding proteins Tbp1 and Tbp2. Gene 130:73-80.
Legrain, M., A. Findeli, D. Villeval, M.-J. Quentin-Millet, and E. Jacobs. 1996. Molecular characterization of hybrid Tbp2 proteins from Neisseria meningitidis. Mol. Microbiol. 19:159-169.
Legrain, M., B. Rokbi, D. Villeval, and E. Jacobs. 1998. Characterization of genetic exchanges between various highly divergent tbpBs having occurred in Neisseria meningitidis. Gene 208:51-59.
Lissolo, L., G. Maitre-Wilmotte, P. Dumas, S. Colombani, A. B. Schryvers, and M.-J. Quentin-Millet. 1995. Evaluation of transferrin-binding protein 2 within the transferrin-binding protein complex as a potential antigen for future meningococcal vaccines. Infect. Immun. 63:884-890.
Marrec-Fairley, M., A. Piette, X. Gallet, R. Brasseur, H. Hara, C. Faipont, J.-M. Ghysen and J.-M. Nguyen-Distèche. 2000. Differential functionalities of amphiphilic peptide segments of the cell-septation penicillin-binding protein 3 of Escherichia coli. Mol. Microbiol. 37:1019-1031.
Mazarin, V., B. Rokbi, and M.-J. Quentin-Millet. 1995. Diversity of the transferrin-binding protein Tbp2 of Neisseria meningitidis. Gene 158:145-146.
Nairn, J., N. C. Price, S. M. Kelly, D. Rigden, L. A. Fothergill-Gilmore, and T. Krell. 1996. Phosphoglycerate mutase from Schizosccharomyces pombe: development of an expression system and characterization of three histidine mutants of the enzyme. Biochim. Biophys. Acta 1296:69-75.
Renauld-Mongenie, G., D. Poncet, L. von Olleschik-Elbheim, T. Cournez, M. Mignon, M. A. Schmidt, and M.-J. Quentin-Millet. 1997. Identification of human transferrin-binding sites within meningococcal transferrin-binding protein B. J. Bacteriol. 179:6400-6407.
Renauld-Mongénie, G., M. Latour, D. Poncet, S. Naville, and M.-J. Quentin-Millet. 1998. Both the full-length and the N-terminal domain of the meningococcal transferrin-binding protein B discriminate between human iron-loaded and apo-transferrin. FEMS Microbiol. Lett. 169:171-177.
Retzer, M. D., R. Yu, and A. B. Schryvers. 1999. Identification of sequences in human transferrin that bind to the bacterial receptor protein, transferrin-binding protein B. Mol. Microbiol. 32:111-121.
Rokbi, B., G. Renauld-Mongenie, M. Mignon, B. Danve, D. Poncet, C. Chabanel, D. A. Caugant, and M. J. Quentin-Millet. 2000. Allelic diversity of the two transferrin binding protein B gene isotypes among a collection of Neisseria meningitidis strains representative of serogroup B disease: implication for the composition of a recombinant TbpB-based vaccine. Infect. Immun. 68:4938-4947.
Rokbi, B., M. Mignon, G. Maitre-Wilmott, L. Lissolo, B. Danve, D. A. Caugant, and M. J. Quentin-Millet. 1997. Evaluation of recombinant transferrin-binding protein B variants from Neisseria meningitidis for their ability to induce cross-reactive and bactericidal antibodies against a genetically diverse collection of serogroup B strains. Infect. Immun. 65:55-63.
Rokbi, B., V. Mazarin, G. Maitre-Willmotte, and M. J. Quentin-Millet. 1993. Identification of two major families of transferrin receptors among Neisseria meningitidis strains based on antigenic and genomic features. FEMS Microbiol. Lett. 110:51-58.
Ronpirin, C., A. E. Jerse, and C. N. Cornelisson. 2001. Gonococcal genes encoding transferrin-binding proteins A and B are arranged in a bicistronic operon but are subject to differential expression. Infect. Immun. 69:6336-6347.
Schryvers, A. B., and I. I. Stojilkovie. 1999. Iron acquisition systems in the pathogenic Neisseria. Mol. Microbiol. 32:1117-1123.
Schryvers, A. B., and L. J. Morris. 1988. Identification and characterization of the transferrin receptor from Neisseria meningitidis. Mol. Microbiol. 2:281-288.
Sims, K. L., and A. B. Schryvers. 2003. Peptide-peptide interactions between human transferrin and transferrin-binding protein B from Moraxella catarrhalis. J. Bacteriol. 185:2603-2610.
Taylor, J. W., and E. T. Kaiser. 1987. Structure-function analysis of proteins through the design, synthesis, and study of peptide models. Methods Enzymol. 154:473-498.
Tettelin, H., N. J., Saunders, J. Heidelberg, A. C. Jeffries, K. E. Nelson, J. A. Eisen, K. A. Ketchum, D. W. Hood, J. F. Peden, R. J. Dodson, W. C. Nelson, M. L. Gwinn, R. DeBoy, J. D. Peterson, E. K. Hickey, D. H. Haft, S. L. Salzberg, O. White, R. D. Fleischmann, B. A. Dougherty, T. Mason, A. Ciecko, D. S. Parksey, E. Blair, H. Cittone, E. B. Clark, M. D. Cotton, T. R. Utterback, H. Khouri, H. Qin, J. Vamathevan, J. Gill, V. Scarlato, V. Masignani, M. Pizza, G. Grandi, L. Sun, H. O. Smith, C. M. Fraser, E. R. Moxon, R. Rappuoli, and J. C. Venter. 2000. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287:1809-1815.
Vonder Haar, R. A., M. Legrain, H. V. J. Kolbe, and E. Jacobs. 1994. Characterization of a highly structured domain in Tbp2 from Neisseria meningitidis involved in binding to human transferrin. J. Bacteriol. 176:6207-6213.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.