Abstract :
[en] Given the importance of the detection and classification of sleep apneas and hypopneas (SAHs) in the diagnosis and the characterization of the SAH syndrome, there is a need for a reliable noninvasive technique measuring respiratory effort. This paper proposes a new method for the scoring of SAHs based on the recording of the midsagittal jaw motion (MJM, mouth opening) and on a dedicated automatic analysis of this signal. Continuous wavelet transform is used to quantize respiratory effort from the jaw motion, to detect salient mandibular movements related to SAHs and to delineate events which are likely to contain the respiratory events. The classification of the delimited events is performed using multilayer perceptrons which were trained and tested on sleep data from 34 recordings. Compared with SAHs scored manually by an expert, the sensitivity and specificity of the detection were 86.1% and 87.4%, respectively. Moreover, the overall classification agreement in the recognition of obstructive, central, and mixed respiratory events between the manual and automatic scorings was 73.1%. The MJM signal is hence a reliable marker of respiratory effort and allows an accurate detection and classification of SAHs.
Scopus citations®
without self-citations
33