The incorporation of a non-natural amino acid (aza-tryptophan) may help to crystallize a protein and to solve its crystal structure. Application to bacteriophage lambda lysozyme.
[en] Until now, wild-type bacteriophage lambda lysozyme had been impossible to crystallize. This difficulty could be overcome by the replacement of the four tryptophan residues by azatryptophans. Analysis of the intermolecular and intramolecular contacts in this modification allows understanding of the differences in behaviour between the native and modified molecules. Furthermore, this mutation was very useful for the creation of new heavy-atom binding sites and for the solution of the non-crystallographic symmetry, which is extremely important for phase improvement. This procedure seems to be generally applicable, at least in the search for new possibilities for heavy-atom binding sites.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Evrard, Christine ; Université Catholique de Louvain - UCL > Département de Chimie > Laboratoire de Chimie Physique et de Cristallographie - CPMC
Fastrez, Jacques; Université Catholique de Louvain - UCL > Département de Chimie > Laboratoire de Biochimie Physique et des Biopolymères - BIOP
Declercq, Jean-Paul; Université Catholique de Louvain - UCL > Département de Chimie > Laboratoire de Chimie Physique et de Cristallographie - CPMC
Language :
English
Title :
The incorporation of a non-natural amino acid (aza-tryptophan) may help to crystallize a protein and to solve its crystal structure. Application to bacteriophage lambda lysozyme.
Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F. Jr, Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. & Tasumi, M. (1977). J. Mol. Biol. 112, 535-542.
Blundell, T. L. & Johnson, L. N. (1976). Protein Crystallography. New York/London/San Francisco: Academic Press.
Brünger, A. T. (1992). X-PLOR Version 3.1. A System for X-ray Crystallography and NMR. Yale University Press, New Haven, CT, USA.
Evrard, C., Fastrez, J. & Declercq, J.-P. (1998). J. Mol. Biol. 276, 151-164.
Hendrickson, W. A. (1991). Science, 254, 51-58.
Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. (1991). Acta Cryst. A47, 110-119.
Lawson, D. M., Artymiuk, P. J., Yewdall, S. J., Smith, J. M. A., Livingstone, J. C., Treffry, A., Luzzago, A., Levi, S., Arosio, P., Cesareni, G., Thomas, C. D., Shaw, W. V. & Harrisson, P. M. (1991). Nature (London), 349, 541-544.
Lee, B. & Richards, F. M. (1971). J. Mol. Biol. 55, 379-400.
Martinezhackert, E., Harlocker, S., Inouye, M., Berman, H. M. & Stock, A. M. (1996). Protein Sci. 5, 1429-1433.
Rossmann, M. G. (1990). Acta Cryst. A46, 73-82.
Sivaraman, J., Coloumbe, R., Magny, M. C., Mason, P., Mort, J. S. & Cygler, M. (1996). Acta Cryst. D52, 874-875.
Soumillion, P. & Fastrez, J. (1992). Biochem. J. 286, 187-191.
Soumillion, P., Jespers, L., Vervoort, J. & Fastrez, J. (1995). Protein Eng. 5, 451-456.
Takeda, S., Yoshimura, H., Endo, S., Takahashi, T. & Nagayama, K. (1995). Proteins Struct. Funct. Gen. 23, 548-556.
Thygesen, J., Krumbholz, S., Levin, I., Zaytzevbashan, A., Harms, J., Bartels, H., Schlunzen, F., Hansen, H. A. S., Bennett, W. S., Volkman, N., Agmon, I., Eisenstein, M., Dribin, A., Maltz, E., Sagi, I., Morlang, S., Fua, M., Franceschi, F., Weinstein, S., Boddekker, N., Sharon, R., Anagnostopoulos, K., Peretz, M., Geva, M., Berkovitchyellin, Z. & Yonath, A. (1996). J. Cryst. Growth, 168, 308-323.