Reference : The electronic states of 2-furanmethanol (furfuryl alcohol) studied by photon absorpt...
Scientific journals : Article
Physical, chemical, mathematical & earth Sciences : Physics
Physical, chemical, mathematical & earth Sciences : Chemistry
The electronic states of 2-furanmethanol (furfuryl alcohol) studied by photon absorption and electron impact spectroscopies
Giuliani, A. [> > > >]
Walker, I. C. [> > > >]
Delwiche, Jacques mailto [Université de Liège - ULiège > Services généraux (Faculté des sciences) > Relations académiques et scientifiques (Sciences) >]
Hoffmann, S. V. [> > > >]
Limao-Vieira, P. [> > > >]
Mason, N. J. [> > > >]
Heyne, B. [> > > >]
Hoebeke, Maryse mailto [Université de Liège - ULiège > Département de physique > Spectroscopie biomédicale >]
Hubin-Franskin, Marie-Jeanne mailto [Université de Liège - ULiège > Département de chimie (sciences) > Chimie physique]
Journal of Chemical Physics
Amer Inst Physics
Yes (verified by ORBi)
[en] 2-furanmethanol (furfuryl alcohol) ; photoelectron spectrum ; photoabsorption
[en] The photoelectron spectrum of 2-furanmethanol (furfuryl alcohol) has been measured for ionization energies between 8 and 11.2 eV and the first three ionization bands assigned to pi(3), pi(2), and n(o) ionizations in order of increasing binding energy. The photoabsorption spectrum has been recorded in the gas phase using both a synchrotron radiation source (5-9.91 eV, 248-125 nm) and electron energy-loss spectroscopy under electric-dipole conditions (5-10.9 eV, 248-90 nm). The (UV) absorption spectrum has also been recorded in solution (4.2-6.36 eV, 292-195 nm). The electronic excitation spectrum appears to be dominated by transitions between pi and pi* orbitals in the aromatic ring, leading to the conclusion that the frontier molecular orbitals of furan are affected only slightly on replacement of a H atom by the -CH2OH group. Additional experiments investigating electron impact at near-threshold energies have revealed two low-lying triplet states and at least one electron/molecule shape resonance. Dissociative electron attachment also shows to be widespread in furfuryl alcohol. (C) 2003 American Institute of Physics.
Researchers ; Professionals

File(s) associated to this reference

Fulltext file(s):

Open access
article18.pdfPublisher postprint100.41 kBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.