Histological and transcriptional study of angiogenesis and lymphangiogenesis in uninvolved skin, acute pinpoint lesions and established psoriasis plaques: an approach of vascular development chronology in psoriasis
[en] Background
Dysregulation of angiogenesis and lymphangiogenesis could participate in psoriasis pathogenesis. Analysis of nascent psoriasis lesions should help at identifying early vascular anomalies.
Objective
To analyse vascular development, angiogenesis and lymphangiogenesis markers expression in uninvolved skin in psoriatic patients (N), early psoriasis lesions or pinpoints (PP) and psoriasis plaques (PSO).
Methods
Skin biopsies were taken in 17 patients in N and in PSO and/or PP. The mRNA steady-state level of angiogenesis and lymphangiogenesis markers was measured by RT-PCR. Immunohistochemistry was performed for von Willebrand factor, podoplanin, Ki-67 and VEGFR3. Blood (BV) and lymphatic (LV) vessels expansion was measured by computer-assisted morphometry.
Results
Clinical and epidermal aspects indicated that PP are intermediate between N and PSO. While total BV area was already increased in PP similarly to PSO as compared to N, LV area in PP was intermediate between N and PSO. Mean LV size was identical in N and PP and increased in PSO, mean BV size in PP being intermediate between N and PSO. VEGF-A 189 variant was increased in PP as compared to N and PSO. As compared to N, angiogenesis markers (VEGF-A isoforms, PlGF, VEGFR2, NRP-1), VEGF-C and NRP-2 were similarly increased in PP and PSO. Keratin 16 and the lymphangiogenesis markers (VEGFR3, prox-1) were intermediate in PP.
Conclusion
These data suggest that the expansion of lymphatic vessels occurs after blood vascular development in psoriasis. Expansion of BV in PP could be followed by vessel enlargement during progression to PSO, in parallel with a decreased VEGF-A 189/VEGF-A 121 balance in plaques
Henno, Audrey ; Université de Liège - ULiège > Dermatologie
Blacher, Silvia ; Université de Liège - ULiège > Département des sciences cliniques > Labo de biologie des tumeurs et du développement
Lambert, Charles ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Laboratoire des tissus conjonctifs
Deroanne, Christophe ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Laboratoire des tissus conjonctifs
Noël, Agnès ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie cellulaire et moléculaire appliquée à l'homme
Nusgens, Betty ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Département des sciences biomédicales et précliniques
Colige, Alain ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Laboratoire des tissus conjonctifs
Language :
English
Title :
Histological and transcriptional study of angiogenesis and lymphangiogenesis in uninvolved skin, acute pinpoint lesions and established psoriasis plaques: an approach of vascular development chronology in psoriasis
Griffiths C.E., and Barker J.N. Pathogenesis and clinical features of psoriasis. Lancet 370 (2007) 263-271
Braverman I.M., and Yen A. Ultrastructure of the capillary loops in the dermal papillae of psoriasis. J Invest Dermatol 68 (1977) 53-60
de la Brassinne M., and Lachapelle J.M. 3H-thymidine labelling of epidermis and dermal infiltrate in psoriatic erythroderma. Acta Derm Venereol 55 (1975) 171-174
Creamer D., Sullivan D., Bicknell R., and Barker J. Angiogenesis in psoriasis. Angiogenesis 5 (2002) 231-236
Lowe P.M., Lee M.L., Jackson C.J., To S.S., Cooper A.J., and Schrieber L. The endothelium in psoriasis. Br J Dermatol 132 (1995) 497-505
Adams R.H., and Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8 (2007) 464-478
Detmar M., Brown L.F., Claffey K.P., Yeo K.T., Kocher O., Jackman R.W., et al. Overexpression of vascular permeability factor/vascular endothelial growth factor and its receptors in psoriasis. J Exp Med 180 (1994) 1141-1146
Ferrara N., Gerber H.P., and LeCouter J. The biology of VEGF and its receptors. Nat Med 9 (2003) 669-676
Mineur P., Colige A.C., Deroanne C.F., Dubail J., Kesteloot F., Habraken Y., et al. Newly identified biologically active and proteolysis-resistant VEGF-A isoform VEGF111 is induced by genotoxic agents. J Cell Biol 179 (2007) 1261-1273
Henno A., Blacher S., Lambert C., Colige A., Seidel L., Noel A., et al. Altered expression of angiogenesis and lymphangiogenesis markers in the uninvolved skin of plaque-type psoriasis. Br J Dermatol 160 (2009) 581-590
Cianfarani F., Zambruno G., Brogelli L., Sera F., Lacal P.M., Pesce M., et al. Placenta growth factor in diabetic wound healing: altered expression and therapeutic potential. Am J Pathol 169 (2006) 1167-1182
Oura H., Bertoncini J., Velasco P., Brown L.F., Carmeliet P., and Detmar M. A critical role of placental growth factor in the induction of inflammation and edema formation. Blood 101 (2003) 560-567
Cao Y., Ji W.R., Qi P., and Rosin A. Placenta growth factor: identification and characterization of a novel isoform generated by RNA alternative splicing. Biochem Biophys Res Commun 235 (1997) 493-498
Yang W., Ahn H., Hinrichs M., Torry R.J., and Torry D.S. Evidence of a novel isoform of placenta growth factor (PlGF-4) expressed in human trophoblast and endothelial cells. J Reprod Immunol 60 (2003) 53-60
Oliver G., and Detmar M. The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes Dev 16 (2002) 773-783
Karkkainen M.J., Haiko P., Sainio K., Partanen J., Taipale J., Petrova T.V., et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5 (2004) 74-80
Partanen T.A., Arola J., Saaristo A., Jussila L., Ora A., Miettinen M., et al. VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor. VEGFR-3, in fenestrated blood vessels in human tissues. FASEB J 14 (2000) 2087-2096
Favier B., Alam A., Barron P., Bonnin J., Laboudie P., Fons P., et al. Neuropilin-2 interacts with VEGFR-2 and VEGFR-3 and promotes human endothelial cell survival and migration. Blood 108 (2006) 1243-1250
Saharinen P., Tammela T., Karkkainen M.J., and Alitalo K. Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. Trends Immunol 25 (2004) 387-395
Hong Y.K., Harvey N., Noh Y.H., Schacht V., Hirakawa S., Detmar M., et al. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 225 (2002) 351-357
Kunstfeld R., Hirakawa S., Hong Y.K., Schacht V., Lange-Asschenfeldt B., Velasco P., et al. Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia. Blood 104 (2004) 1048-1057
Henno A., Lapiere C.M., Nusgens B.V., and de la Brassinne M. Lymphatic vasculature: dermatological implications of emerging concepts. Ann Dermatol Venereol 135 (2008) 704-709
Christophers E., Parzefall R., and Braun-Falco O. Initial events in psoriasis: quantitative assessment. Br J Dermatol 89 (1973) 327-334
Braun-Falco O., and Christophers E. Structural aspects of initial psoriatic lesions. Arch Dermatol Forsch 251 (1974) 95-110
Braun-Falco O., and Schmoeckel C. The dermal inflammatory reaction in initial psoriatic lesions. Arch Dermatol Res 258 (1977) 9-16
Chowaniec O., Jablonska S., Beutner E.H., Proniewska M., Jarzabek-Chorzelska M., and Rzesa G. Earliest clinical and histological changes in psoriasis. Dermatologica 163 (1981) 42-51
Nusgens B.V., Humbert P., Rougier A., Colige A.C., Haftek M., Lambert C.A., et al. Topically applied vitamin C enhances the mRNA level of collagens I and III, their processing enzymes and tissue inhibitor of matrix metalloproteinase 1 in the human dermis. J Invest Dermatol 116 (2001) 853-859
Hajitou A., Sounni N.E., Devy L., Grignet-Debrus C., Lewalle J.M., Li H., et al. Down-regulation of vascular endothelial growth factor by tissue inhibitor of metalloproteinase-2: effect on in vivo mammary tumor growth and angiogenesis. Cancer Res 61 (2001) 3450-3457
Deroanne C.F., Bonjean K., Servotte S., Devy L., Colige A., Clausse N., et al. Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene 21 (2002) 427-436
Creamer D., Allen M.H., Sousa A., Poston R., and Barker J.N. Localization of endothelial proliferation and microvascular expansion in active plaque psoriasis. Br J Dermatol 136 (1997) 859-865
Halin C., and Detmar M. Chapter 1. Inflammation, angiogenesis, and lymphangiogenesis. Methods Enzymol 445 (2008) 1-25
Schacht V., Dadras S.S., Johnson L.A., Jackson D.G., Hong Y.K., and Detmar M. Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol 166 (2005) 913-921
Hong Y.K., Lange-Asschenfeldt B., Velasco P., Hirakawa S., Kunstfeld R., Brown L.F., et al. VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins. FASEB J 18 (2004) 1111-1113
Man X.Y., Yang X.H., Cai S.Q., Yao Y.G., and Zheng M. Immunolocalization and expression of vascular endothelial growth factor receptors (VEGFRs) and neuropilins (NRPs) on keratinocytes in human epidermis. Mol Med 12 (2006) 127-136
Petrova T.V., Bono P., Holnthoner W., Chesnes J., Pytowski B., Sihto H., et al. VEGFR-3 expression is restricted to blood and lymphatic vessels in solid tumors. Cancer Cell 13 (2008) 554-556
Karpanen T., Wirzenius M., Makinen T., Veikkola T., Haisma H.J., Achen M.G., et al. Lymphangiogenic growth factor responsiveness is modulated by postnatal lymphatic vessel maturation. Am J Pathol 169 (2006) 708-718
Lee J.H., Cho E.Y., Namkung J.H., Kim E., Kim S., Shin E.S., et al. Single-nucleotide polymorphisms and haplotypes in the VEGF receptor 3 gene and the haplotype GC in the VEGFA gene are associated with psoriasis in Koreans. J Invest Dermatol 128 (2008) 1599-1603
Ruhrberg C., Gerhardt H., Golding M., Watson R., Ioannidou S., Fujisawa H., et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16 (2002) 2684-2698
Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 6 (2000) 389-395
Braverman I.M., and Sibley J. Role of the microcirculation in the treatment and pathogenesis of psoriasis. J Invest Dermatol 78 (1982) 12-17
Ancelin M., Chollet-Martin S., Herve M.A., Legrand C., El Benna J., and Perrot-Applanat M. Vascular endothelial growth factor VEGF189 induces human neutrophil chemotaxis in extravascular tissue via an autocrine amplification mechanism. Lab Invest 84 (2004) 502-512
Watari K., Nakao S., Fotovati A., Basaki Y., Hosoi F., Bereczky B., et al. Role of macrophages in inflammatory lymphangiogenesis: enhanced production of vascular endothelial growth factor C and D through NF-kappaB activation. Biochem Biophys Res Commun 377 (2008) 826-831
Hamrah P., Chen L., Zhang Q., and Dana M.R. Novel expression of vascular endothelial growth factor receptor (VEGFR)-3 and VEGF-C on corneal dendritic cells. Am J Pathol 163 (2003) 57-68
Detmar M., Brown L.F., Schon M.P., Elicker B.M., Velasco P., Richard L., et al. Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol 111 (1998) 1-6
Teoh D., Johnson L.A., Hanke T., McMichael A.J., and Jackson D.G. Blocking development of a CD8+ T cell response by targeting lymphatic recruitment of APC. J Immunol 182 (2009) 2425-2431
Kataru R.P., Jung K., Jang C., Yang H., Schwendener R.A., Baik J.E., et al. Critical role of CD11b+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood 113 (2009) 5650-5659