[en] M cells represent a potential portal for oral delivery of peptides and proteins due to their high endocytosis abilities. An in vitro model of human FAE (co-cultures) was used to evaluate the influence of M cells on the transport of free and encapsulated helodermin - a model peptide - across the intestinal epithelium. M cells enhanced transport of intact helodermin (18-fold, Papp 3 X 10(-6) cm s(-1)). As pegylation increased nanoparticle transport by M cells, helodermin was encapsulated in 200 mu nanoparticles containing PEG-b-PLA:PLGA 1:1. Stability of the selected formulation was demonstrated in simulated gastric and intestinal fluids. M cells increased the transport of helodermin encapsulated in these nanoparticles by a factor of 415, as compared to Caco-2 cells. Transport of free and encapsulated helodermin occurred most probably by endocytosis. In conclusion, M cells improved helodermin transport across the intestinal epithelium, confirming their high potential for oral delivery of peptides.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
First Europe (n° 215099 and 415847) VACCINOR project (WINOMAT)
Funders :
BELSPO - Service Public Fédéral de Programmation Politique scientifique F.R.S.-FNRS - Fonds de la Recherche Scientifique DGTRE - Région wallonne. Direction générale des Technologies, de la Recherche et de l'Énergie UCL - Université Catholique de Louvain
Commentary :
The authors acknowledge Journal of Controlled Release (Elsevier) for allowing them to archive this paper.
Gebert A., Rothkotter H.J., and Pabst R. M cells in Peyer's patches of the intestine. Int. Rev. Cyt. 167 (1996) 91-159
Owen R.L. Uptake and transport of intestinal macromolecules and microorganisms by M cells in Peyer's patches-a personal and historical perspective. Semin. Immunol. 11 3 (1999) 157-163
Neutra M.R. Interactions of viruses and microparticles with apical plasma membranes of M cells: implications for human immunodeficiency virus transmission. J. Infect. Dis. 179 Suppl 3 (1999) S441-S443
A. des Rieux, V. Fievez, I. Théate, J. Mast, V. Preat, Y.J. Schneider, An improved in vitro model of the human intestinal follicle associated epithelium for studies of nanoparticles by M cells, Eur. J. Pharm. Sci. (in press).
des Rieux A., Fievez V., Garinot M., Schneider Y.J., and Preat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J. Control. Release 116 1 (2006) 1-27
Galindo-Rodriguez S.A., Allemann E., Fessi H., and Doelker E. Polymeric nanoparticles for oral delivery of drugs and vaccines: a critical evaluation of in vivo studies. Crit. Rev. Ther. Drug Carr. Syst. 22 5 (2005) 419-464
Vert M. Polyvalent polymeric drug carriers. Crit. Rev. Ther. Drug Carr. Syst. 2 3 (1986) 291-327
des Rieux A., Ragnarsson E.G.E., Gullberg E., Preat V., Schneider Y.J., and Artursson P. Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. Eur. J. Pharm. Sci. 25 4-5 (2005) 455-465
Desai M.P., Labhasetwar V., Amidon G.L., and Levy R.J. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm. Res. 13 12 (1996) 1838-1845
McClean S., Prosser E., Meehan E., O'Malley D., Clarke N., Ramtoola Z., and Brayden D. Binding and uptake of biodegradable poly-dl-lactide micro- and nanoparticles in intestinal epithelia. Eur. J. Pharm. Sci. 6 2 (1998) 153-163
Mosqueira V.C., Legrand P., Gulik A., Bourdon O., Gref R., Labarre D., and Barratt G. Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules. Biomaterials 22 22 (2001) 2967-2979
Otsuka H., Nagasaki Y., and Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Deliv. Rev. 55 3 (2003) 403-419
Tobio M., Sanchez A., Vila A., Soriano I., Evora C., Vila-Jato J.L., and Alonso M.J. The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids Surf., B Biointerfaces 18 3-4 (2000) 315-323
Vila A., Gill H., McCallion O., and Alonso M.J. Transport of PLA-PEG particles across the nasal mucosa: effect of particle size and PEG coating density. J. Control. Release 98 2 (2004) 231-244
Vandermeers-Piret M.C., Vandermeers A., Gourlet P., Ali M.H., Waelbroeck M., and Robberecht P. Evidence that the lizard helospectin peptides are O-glycosylated. Eur. J. Biochem. 267 14 (2000) 4556-4560
Hoshino M., Yanaihara C., Hong Y.M., Kishida S., Katsumaru Y., Vandermeers A., Vandermeers-Piret M.C., Robberecht P., Christophe J., and Yanaihara N. Primary structure of helodermin, a VIP-secretin-like peptide isolated from Gila monster venom. FEBS Lett. 178 2 (1984) 233-239
Blankenfeldt W., Nokihara K., Naruse S., Lessel U., Schomburg D., and Wray V. NMR spectroscopic evidence that helodermin, unlike other members of the secretin/VIP family of peptides, is substantially structured in water. Biochemistry 35 19 (1996) 5955-5962
Rescigno M., Urbano M., Valzasina B., Francolini M., Rotta G., Bonasio R., Granucci F., Kraehenbuhl J.P., and Ricciardi-Castagnoli P. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2 4 (2001) 361-367
Gref R., Luck M., Quellec P., Marchand M., Dellacherie E., Harnisch S., Blunk T., and Muller R.H. 'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf. B Biointerfaces 18 3-4 (2000) 301-313
Means G.E., and Feeney R.E. Reductive alkylation of amino groups in proteins. Biochemistry 7 6 (1968) 2192-2201
Bazile D., Prud'homme C., Bassoullet M.T., Marlard M., Spenlehauer G., and Veillard M. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J. Pharm. Sci. 84 4 (1995) 493-498
Freitas S., Merkle H.P., and Gander B. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J. Control. Release 102 2 (2005) 313-332
Gao X., Tao W., Lu W., Zhang Q., Zhang Y., Jiang X., and Fu S. Lectin-conjugated PEG-PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials 27 18 (2006) 3482-3490
Fessi H., Puisieux F., Devissaguet J.P., Ammoury N., and Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 55 1 (1989) R1-R4
Dressman J.B., and Reppas C. In vitro-in vivo correlations for lipophilic, poorly water-soluble drugs. Eur. J. Pharm. Sci. 11 Suppl 2 (2000) S73-S80
Gullberg E., Leonard M., Karlsson J., Hopkins A.M., Brayden D., Baird A.W., and Artursson P. Expression of specific markers and particle transport in a new human intestinal M-cell model. Biochem. Biophys. Res. Commun. 279 3 (2000) 808-813
Ould-Ouali L., Noppe M., Langlois X., Willems B., Te R.P., Timmerman P., Brewster M.E., Arien A., and Preat V. Self-assembling PEG-p(CL-co-TMC) copolymers for oral delivery of poorly water-soluble drugs: a case study with risperidone. J. Control. Release 102 3 (2005) 657-668
Neutra M.R., Phillips T.L., Mayer E.L., and Fishkind D.J. Transport of membrane-bound macromolecules by M cells in follicle-associated epithelium of rabbit Peyer's patch. Cell Tissue Res. 247 3 (1987) 537-546
Mach J., Hshieh T., Hsieh D., Grubbs N., and Chervonsky A. Development of intestinal M cells. Immunol. Rev. 206 1 (2005) 177-189
Owen R.L., and Bhalla D.K. Cytochemical analysis of alkaline phosphatase and esterase activities and of lectin-binding and anionic sites in rat and mouse Peyer's patch M cells. Am. J. Anat. 168 2 (1983) 199-212
Kraehenbuhl J.P., and Neutra M.R. Epithelial M cells: differentiation and function. Annu. Rev. Cell Dev. Biol. 16 1 (2000) 301-332
Liang E., Kabcenell A.K., Coleman J.R., Robson J., Ruffles R., and Yazdanian M. Permeability measurement of macromolecules and assessment of mucosal antigen sampling using in vitro converted M cells. J. Pharmacol. Toxicol. Methods 46 2 (2002) 93-101
Eldridge J.H., Hammond C.J., Meulbroek J.A., Staas J.K., Gilley R.M., and Tice T.R. Controlled vaccine release in the gut-associated lymphoid-tissues. 1. Orally-administered biodegradable microspheres target the Peyers patches. J. Control. Release 11 1-3 (1990) 205-214
Tobio M., Gref R., Sanchez A., Langer R., and Alonso M.J. Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharm. Res. 15 2 (1998) 270-275
Vila A., Sanchez A., Tobio M., Calvo P., and Alonso M.J. Design of biodegradable particles for protein delivery. J. Control. Release 78 1-3 (2002) 15-24
Behrens I., Pena A.I., Alonso M.J., and Kissel T. Comparative uptake studies of bioadhesive and non-bioadhesive nanoparticles in human intestinal cell lines and rats: the effect of mucus on particle adsorption and transport. Pharm. Res. 19 8 (2002) 1185-1193