[en] Average proton and electron auroral images are compiled from three years of observations by the IMAGE spacecraft, binned according to concurrent K[SUB]P[/SUB] and upstream solar wind conditions measured by the ACE spacecraft. The solar wind parameters include solar wind velocity, density, and pressure, interplanetary magnetic field (IMF) magnitude and orientation, and an estimate of the magnetopause reconnection rate. We use both (a) the overall variation in brightness in the images and (b) the variation in location of the aurorae with respect to the binning parameters to determine which parameters best order the auroral response. We find that the brightness varies by a factor of ~50 with K[SUB]P[/SUB], a similar amount with estimated dayside reconnection voltage, ~15 with the IMF, ~3 with solar wind density, ~2 with solar wind velocity, and ~5 with pressure. Clearly, geomagnetic activity as measured by K[SUB]P[/SUB] and auroral dynamics are closely associated. In terms of the solar wind-magnetosphere coupling that drives auroral dynamics, the IMF is of paramount importance in modulating this, with solar wind speed and density playing a lesser role. Dayside reconnection voltage, derived from the solar wind velocity and IMF magnitude and orientation, orders the data almost as well as K[SUB]P[/SUB], though we find a plateau in the auroral response between voltages of 100 and 150 kV. We also discuss changes in configuration and overall size of the average auroral oval with upstream conditions.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Milan, S. E.; Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK
Evans, T. A.; Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK
Hubert, Benoît ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Language :
English
Title :
Average auroral configuration parameterized by geomagnetic activity and solar wind conditions
Blockx, C., Gérard, J.-C., Meurant, M., Hubert, B., and Coumans, V.: Far ultraviolet remote sensing of the isotropy boundary and magnetotail stretching, J. Geophys. Res., 110, A11215, doi:10.1029/2005JA011103, 2005. (Pubitemid 44971531)
Boakes, P. D., Milan, S. E., Abel, G. A., Freeman, M. P., Chisham, G., Hubert, B., and Sotirelis, T.: On the use of IMAGE FUV for estimating the latitude of the open/closed magnetic field line boundary in the ionosphere, Ann. Geophys., 26, 2759-2769, 2008, http://www.ann-geophys.net/26/2759/2008/.
Burch, J. L.: IMAGE mission overview, Space Sci. Rev., 91, 1-14, 2000.
Coumans, V., Gérard, J.-C., Hubert, B., Mende, S. B., and Cowley, S. W. H.: Morphology and seasonal variations of global auroral proton precipitation observed by IMAGE-FUV, J. Geophys. Res., 109, A12205, doi:10.1029/2003JA010348, 2004.
Coumans, V., Gérard, J.-C., Hubert, B., and Meurant, M.: Global auroral proton precipitation observed by IMAGE-FUV: Noon and midnight brightness dependence on solar wind characteristics and IMF orientation, J. Geophys. Res., 111, A05210, doi:10.1029/2005JA011317, 2006.
Coumans, V., Blockx, C., Gérard, J.-C., Hubert, B., and Connors, M.: Global morphology of substorm growth phases observed by the IMAGE-SI12 imager, J. Geophys. Res., 112, A11211, doi:10.1029/2007JA012329, 2007.
Fairfield, D. H.: Polar magnetic disturbances and the interplanetary magnetic field, Space Res., VIII, 107-119, 1967.
Feldstein, Y. I. and Starkov, G. V.: Dynamics of auroral belt and geomagnetic disturbances, Planet. Space Sci., 15, 209-229, 1967.
Frank, L. A. and Craven, J. D.: Imaging results from Dynamics Explorer 1, Rev. Geophys., 26, 249-283, 1988.
Frey, H. U., Mende, S. B., Immel, T. J., Fuselier, S. A., Claflin, E. S., Gérard, J.-C., and Hubert, B.: Proton aurora in the cusp, J. Geophys. Res., 107, A1091, doi:10.1029/2001JA900161, 2002.
Frey, H. U., Mende, S. B., Immel, T. J., Gérard, J.-C., Hubert, B., Habraken, S., Spann, J., Gladstone, G. R., Bisikalo, D. V., and Shematovich, V. I.: Summary of quantitative interpretation of IMAGE Far Ultraviolet auroral data, Space Sci. Rev., 109, 255-283, 2003.
Fuselier, S. A., Frey, H. U., Trattner, K.-H., Mende, S. B., and Burch, J. L.: Cusp aurora dependence on interplanetary magnetic field BZ, J. Geophys. Res., 107, A1111, doi:10.1029/2001JA900165, 2002.
Gussenhoven, M. S., Hardy, D. A., and Heinemann, N.: The equatorward boundary of auroral ion precipitation, J. Geophys. Res., 92, 3273-3283, 1987.
Hardy, D. A., Gussenhoven, M. S., and Holeman, E.: A statisticalmodel of auroral electron-precipitation, J. Geophys. Res., 90, 4229-4248, 1985.
Hardy, D. A., Gussenhoven, M. S., and Brautigam, D.: A statistical model of auroral ion precipitation, J. Geophys. Res., 94, 370-392, 1989.
Heppner, J. P. and Maynard, N. C.: Empirical high-latitude electricfield models, J. Geophys. Res., 92, 4467-4489, 1987.
Holzworth, R. H. and Meng, C.-I.: Mathematical representation of the auroral oval, Geophys. Res. Lett., 2, 377-380, 1975.
Kan, J. R. and Lee, L. C.: Energy coupling function and solar windmagnetosphere dynamo, Geophys. Res. Lett., 6, 577-580, 1979.
Liou, K., Newell, P. T., Meng, C.-I., Brittnacher, M., and Parks, G.: Characteristics of the solar wind controlled auroral emissions, J. Geophys. Res., 103, 17543-17557, 1998. (Pubitemid 128664905)
McComas, D. J., Bame, S. J., Barker, P., Feldman, W. C., Phillips, J. L., Riley, P., and Griffee, J. W.: Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer, Space Sci. Rev., 86, 563-612, 1998. (Pubitemid 128511763)
Mende, S. B., Heetderks, H., Frey, H. U., Lampton, M., Geller, S. P., Habraken, S., Renotte, E., Jamar, C., Rochus, P., Spann, J., Fuselier, S. A., Gérard, J.-C., Gladstone, R., Murphree, S., and Cogger, L.: Far ultraviolet imaging from the IMAGE spacecraft. 1. System design, Space Sci. Rev., 91, 243-270, 2000a.
Mende, S. B., Heetderks, H., Frey, H. U., Lampton, M., Geller, S. P., Abiad, R., Siegmund, O. H. W., Tremsin, A. S., Spann, J., Dougani, H., Fuselier, S. A., Magoncelli, A. L., Bumala, M. B., Murphree, S., and Trondsen, T.: Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging, Space Sci. Rev., 91, 271-285, 2000b.
Mende S. B., Frey, H. U. , Morsony, B. J., and Immel, T. J.: Statistical behavior of proton and electron auroras during substorms, J. Geophys. Res., 108, 1339, doi:10.1029/2002JA009751, 2003.
Milan, S. E., Lester, M., Cowley, S. W. H., and Brittnacher, M.: Dayside convection and auroral morphology during an interval of northward interplanetary magnetic field, Ann. Geophys., 18, 436-444, 2000, http://www.ann-geophys.net/ 18/436/2000/.
Milan, S. E., Lester, M., Cowley, S.W. H., Oksavik, K., Brittnacher, M., Greenwald, R. A., Sofko, G., and Villain, J.-P.: Variations in the polar cap area during two substorm cycles, Ann. Geophys., 21, 1121-1140, 2003, http://www.ann-geophys.net/21/1121/2003/. (Pubitemid 36726845)
Milan, S. E., Boakes, P. D., and Hubert, B.: Response of the expanding/ contracting polar cap to weak and strong solar wind driving: implications for substorm onset, J. Geophys. Res., 113, A09215, doi:10.1029/2008JA013340, 2008.
Milan, S. E., Grocott, A., Forsyth, C., Imber, S. M., Boakes, P. D., and Hubert, B.: A superposed epoch analysis of auroral evolution during substorm growth, onset and recovery: open magnetic flux control of substorm intensity, Ann. Geophys., 27, 659-668, 2009, http://www.ann-geophys.net/27/659/2009/.
Newell, P. T., Sotirelis, T., Liou, K., Meng, C.-I., and Rich, F. J.: A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables, J. Geophys. Res., 112, A01206, doi:10.1029/2006JA012015, 2007.
Reiff, P., Spiro, R., and Hill, T.: Dependence of polar cap potential drop on interplanetary parameters, J. Geophys. Res., 86, 7639-7648, 1981.
Ruohoniemi, J. M. and Greenwald, R. A.: Statistical patterns of high-latitude convection obtained from Goose Bay HF radar observations, J. Geophys. Res., 101, 21743-21763, 1996.
Scurry, L. and Russell, C. T.: Proxy studies of energy transfer to the magnetosphere, J. Geophys. Res., 96, 9541-9548, 1991.
Sergeev, V. A., Sazhina, E. M., and Tsyganenko, N. A.: Pitch-angle scattering of energetic protons in the magnetotail current sheet as the dominant source of their isotropic precipitation into the nightside ionosphere, Planet. Space Sci., 31, 1147-1155, 1983.
Shue, J.-H., Newell, P. T., Liou, K., and Meng, C.-I.: Solar wind density and velocity control of auroral brightness under normal interplanetary magnetic field conditions, J. Geophys. Res., 107, 1428, doi:10.1029/2001JA009138, 2002.
Siscoe, G. L., Crooker, N. U., and Siebert, K. D.: Transpolar potential saturation: Roles of region 1 current system and solar wind ram pressure, J. Geophys. Res., 107, 1321, doi:10.1029/2001JA009176, 2002.
Smith, C. W., L'Heureux, J., Ness, N. F., Acũna, M. H., Burlaga, L. F., and Scheifele, J.: The ACE Magnetic Field Experiment, Space Sci. Rev., 86, 613-632, 1998.
Stone, E. C., Frandsen, A. M., Mewaldt, R. A., Christian, E. R., Marglies, D., Ormes, J. F., and Snow, F.: The Advanced Composition Explorer, Space Sci. Rev., 86, 1-22, 1998. (Pubitemid 128511744)