[en] [1] Regional air-sea fluxes of anthropogenic CO2 are estimated using a Green's function inversion method that combines data-based estimates of anthropogenic CO2 in the ocean with information about ocean transport and mixing from a suite of Ocean General Circulation Models (OGCMs). In order to quantify the uncertainty associated with the estimated fluxes owing to modeled transport and errors in the data, we employ 10 OGCMs and three scenarios representing biases in the data-based anthropogenic CO2 estimates. On the basis of the prescribed anthropogenic CO2 storage, we find a global uptake of 2.2 +/- 0.25 Pg C yr(-1), scaled to 1995. This error estimate represents the standard deviation of the models weighted by a CFC-based model skill score, which reduces the error range and emphasizes those models that have been shown to reproduce observed tracer concentrations most accurately. The greatest anthropogenic CO2 uptake occurs in the Southern Ocean and in the tropics. The flux estimates imply vigorous northward transport in the Southern Hemisphere, northward cross-equatorial transport, and equatorward transport at high northern latitudes. Compared with forward simulations, we find substantially more uptake in the Southern Ocean, less uptake in the Pacific Ocean, and less global uptake. The large-scale spatial pattern of the estimated flux is generally insensitive to possible biases in the data and the models employed. However, the global uptake scales approximately linearly with changes in the global anthropogenic CO2 inventory. Considerable uncertainties remain in some regions, particularly the Southern Ocean.
Mouchet, Anne ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Álvarez, M., A. Ríos, F. F. Pérez, H. L. Bryden, and G. Rosón (2003), Transports and budgets of total inorganic carbon in the subpolar and temperate North Atlantic, Global Biogeochem. Cycles, 17(1), 1002, doi:10.1029/2002GB001881.
Anderson, L. A., and J. L. Sarmiento (1994), Redfield ratios of remineralization determined by nutrient data analysis, Global Biogeochem. Cycles, 8(1), 65-80.
Bousquet; P., P. Peylin, P. Ciais, C. LeQuéré, P. Friedlingstein, and P. P. Tans (2000), Regional changes in carbon dioxide fluxes of land and oceans since 1980, Science, 290, 1342-1346.
Bryden, H. L., E. L. McDonagh, and B. A. King (2003), Changes in ocean water mass properties: Oscillations or trends?, Science, 300, 2086-2088.
Doney, S., et al. (2004), Evaluating global ocean carbon models: The importance of realistic physics, Global Biogeochem. Cycles, 18, G133017, doi:l0.1029/2003GB002150.
Dutay, J.-C., et al. (2002), Evaluation of ocean model ventilation with CFC-11: Comparison of 13 global ocean models, Ocean Modell., 4, 89-120.
Enting, I. G., and J. V. Mansbridge (1989), Latitudinal distribution of sources and sinks of atmospheric CO2: Direct inversion of filtered data, Tellus, Ser. B., 41, 111-126.
Enting, I. G., T. M. L. Wigley, and M. Heimann (1994), Future emissions and concentrations of carbon dioxide: Key ocean/atmosphere/land analyses, technical report, Div. of Atmos. Res., Comonw. Sci. and Ind. Res. Org., Melbourne, Australia.
Etheridge, D. M., L. P. Steele, R. L. Langenfelds, R. J. Francey, J.-M. Barnola, and V. I. Morgan (1996), Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn, J. Geophys. Res., 101(D2), 4115-4128.
Friedli, H., H. Loetscher, H. Oeschger, U. Siegenthaler, and B. Stauffer (1986), Ice core record of the 13C/12C ratio of atmospheric CO2, in the past two centuries, Nature, 324, 237-238.
García, M., I. Bladé, A. Cruzado, Z. Velésquez, H. Garcia, J. Puigdefabregas, and J. Sospedra (2002), Observed variability of water properties and transports on the World Ocean Circulation Experiment SR1b section across the Antarctic Circumpolar Current J. Geophys. Res., 107(C10), 3162, doi:10.1029/2000JC000277.
Gloor, M., N. Gruber, T. M. C. Hughes, and J. L. Sarmiento (2001), An inverse modeling method for estimation of net air-sea fluxes from bulk data: Methodology and application to the heat cycle, Global Biogeochem. Cycles, 15(4), 767-782.
Gloor, M., N. Gruber, J. L. Sarmiento, C. L. Sabine, R. A. Feely, and C. Rödenbeck (2003), A first estimate of present and pre-industrial air-sea CO2 flux patterns based on ocean interior carbon measurements and models, Geophys. Res. Lett., 30(1), 1010, doi:10.1029 /2002GL015594.
Gnanadesikan, A., N. Gruber, R. D. Slater, and J. L. Sarmiento (2002), Oceanic vertical exchange and new production: A comparison between model results and observations, Deep Sea Res., Part II, 49, 363-401.
Gnanadesikan, A., J. P. Dunne, R. M. Key, K. Matsumoto, J. L. Sarmiento, R. D. Slater, and P. S. Swathi (2004), Oceanic ventilation and biogeochemical cycling: Understanding the physical mechanisms that produce realistic distributions of tracers and productivity, Global Biogeochem. Cycles, 18, GB4010, doi:10.1029/2003GB002097.
Gordon, A. L., and R. A. Fine (1996), Pathways of water between the Pacific and Indian Oceans in the Indonesian Seas, Nature, 379, 146-149.
Gruber, N. (1998), Anthropogenic CO2 in the Atlantic Ocean, Global Biogeochem. Cycles, 12(1), 165-191.
Gruber, N., J. L. Sarmiento, and T. F. Stocker (1996), An improved method for detecting anthropogenic CO2 in the oceans, Global Biogeochem. Cycles, 10(4), 809-837.
Gruber, N., M. Gloor, T. M. C. Hughes, and J. L. Sarmiento (2001), Air-sea flux of oxygen estimated from bulk data: lmplications for the marine and atmospheric oxygen cycle, Global Biogeochem. Cycles, 15(4), 783-803.
Gruber, N., C. D. Keeling, and N. R. Bates (2002), Interannual variability in the North Atlantic Ocean carbon sink, Science, 298, 2374-2378.
Hall, T. M., and F. W. Primeau (2004), Separating the natural and anthropogenic air-sea flux of CO2: The Indian Ocean, Geophys. Res. Lett., 31, L23302, doi:10.1029/2004GLO20589.
Holfort, J., K. M. Johnson, B. Siedler, and D. W. R. Wallace (1998), Meridional transport of dissolved inorganic carbon in the South Atlantic Ocean, Global Biogeochem. Cycles, 12(3), 479-499.
Johnson, G. C., and N. Gruber (2006), Decadal water mass variations along 20°W in the northeastern Atlantic Ocean, Prog. Oceanogr., in press.
Kaminski, T., P. J. Rayner, M. Heimann, and I. G. Enting (2001), On aggregation errors in atmospheric transport inversions, J. Geophys. Res., 106(D5), 4703-4716.
Keeling, C. D., R. B. Bacastow, A. F. Carter, S. C. Piper, T. P. Whorf, M. Heimann, W. G. Mock, and H. Roeloffzen (1989), A three-dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data, in Aspects of Climate Variability in the Pacific and the Western Americas, Geophys. Monogr. Ser., vol. 55, edited by D. H. Peterson, pp. 165-237, AGU, Washington, D. C.
Keeling, C. D., H. Brix, and N. Gruber (2004), Seasonal and long-term dynamics of the upper ocean carbon cycle at station ALOHA near Hawaii, Global Biogeochem. Cycles, 18, GB4006, doi:10.1029/2004GB002227.
Keeling, R. F. (2005), Comment on "The ocean sink for atmospheric CO2," Science, 381, 1734, doi:10.1126/science.1109620.
Key, R. M., A. Kozyr, C. L. Sabine, K. Lee, R. Wanninkhof, J. L. Bullister, R. A. Feely, F. J. Millero, C. Mordy, and T.-H. Peng (2004), A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP), Global Biogeochem. Cycles, 18, GB4031, doi:10.1029/ 2004GB002247.
Lee, K., et al. (2003), An updated, anthropogenic CO2 inventory in the Atlantic Ocean, Global Biogeochem. Cycles, 17(4), 1116, doi:10.102o/2003GBOO2067.
Lundberg, L., and P. M. Haugan (1996), A Nordic Seas-Arctic Ocean carbon budget from volume flows and inorganic carbon data, Global Biogeochem. Cycles, 10(3), 493-510.
Macdonald, A. M., M. O. Baringer, R. Wanninkhof, K. Lee, and D. W. R. Wallace (2003), A 1998-1992 comparison of inorganic carbon and its transport across 24.5°N in the Atlantic, Deep Sea Res., Part II, 50, 3041-3064.
Maier-Reimer, E., and K. Hasselmann (1987), Transport and storage Of CO2 in the ocean - An inorganic ocean-circulation carbon cycle model, Clim. Dyn., 2, 63-90.
Matsumoto, K., and N. Gruber (2005), How accurate is the estimation of anthropogenic carbon in the ocean: An evaluation of the AC* method, Global Biogeochem. Cycles, 19, GB3014, doi:10.1029/2004GB002397.
Matsumoto, K., et al. (2004), Evaluation of ocean carbon cycle models with data-based metrics, Geophys. Res. Lett., 31, L07303, doi:10.1029/ 2003GL018970.
McPhaden, M. J., and D. Zbang (2002), Slowdown of the meridional overturning circulation in the upper Pacific Ocean, Nature, 415, 603-608.
Mikaloff Fletcher, S. E., N. P. Gruber, and A. Jacobson (2003), Ocean Inversion Project how-to document, version 1.0, report, 18 pp., Inst. for Geophys. and Planet. Phys., Univ. of Calif., Los Angeles.
Murnane, R. J., J. L. Sarmiento, and C. LeQuéré (1999), Spatial distribution of air-sea fluxes and the interhemispheric transport of carbon by the oceans, Global Biogeochem. Cycles, 13(2), 287-305.
Neftel, A., E. Moor, H. Oeschger, and B. Stauffer (1985), Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries, Nature, 315, 45-47.
Orr, J. C., et al. (2001), Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models, Global Biogeochem. Cycles, 15(1), 43-60.
Raynaud, S., O. Aumont, K. Rodgers, P. Yiou, and J. C. Orr (2005), Interannual-to-decadal variability of North Atlantic air-sea CO2 fluxes, Ocean Sci. Discuss., 2, 437-472.
Rosón, G., A. F. Ríos, F. F. Pérez, A. Lavin, and H. L. Bryden (2003), Carbon distribution, fluxes, and budgets in the subtropical North Atlantic Ocean (24.5°N), J. Geophys. Res., 108(C5), 3144, doi:10.1029/1999JC000047.
Sabine, C. L., and N. Gruber (2005), Response to comment on "The oceanic sink for anthropogenic CO2," Science, 308, 1743, doi:10.1126/science.1109949.
Sabine, C. L., R. M. Key, K. M. Johnson, F. J. Millero, J. L. Sarmiento, D. W. R. Wallace, and C. D. Winn (1999), Anthropogenic CO2 inventory of the Indian Ocean, Global Biogeochem. Cycles, 13(1), 179-198.
Sabine, C. L., R. A. Feely, R. M. Key, J. L. Bullister, F. J. Millero, K. Lee, T.-H. Peng, B. Tillbrook, T. Ono, and C. S. Wong (2002), Distribution of anthropogenic CO2 in the Pacific Ocean, Global Biogeochem. Cycles, 16(4), 1083, doi:10.1029/2001GB00639.
Sabine, C. L., et al. (2004), The oceanic sink for andiropogenic CO2, Science, 305, 367-371.
Sarmiento, J. L., J. C. Orr, and U. Siegenthaler (1992), A perturbation simulation of CO2 uptake in an ocean general circulation model, J. Geophys. Res., 97(C3), 3621-3645.
Schlitzer, R. (2004), Export production in the equatorial and North Pacific derived from dissolved oxygen, nutrient, and carbon data, J. Oceanogr., 60, 53-62.
Takahashi, T., et al. (2002), Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects, Deep Sea Res., Part II, 49, 1601-1622.
Takahashi, T., S. C. Sutherland, R. A. Feely, and C. E. Cosca (2003), Decadal variation of the surface water pCO2 in the western and eastern equatorial Pacific, Science, 302, 852-856.
Tans, P. P., I. Y. Fung, and T. Takahashi (1990), Observational constraints on the global atmospheric CO2 budget, Science, 247, 1431-1438.
Taylor, K. E. (2001), Summarizing multiple aspects of model performance in a single diagram, J. Genophys. Res., 106(D7), 7183-7192.
Wallace, D. R. (200 1), Storage and transport of excess CO2 in the oceans: The JGOFS/WOCE Global CO2 Survey, in Ocean Circulation and Climate, pp. 489-521, Elsevier, New York.
Watson, A. J., and J. C. Orr (2003), Carbon dioxide fluxes in the global ocean, in Ocean Biogeochemistry, pp. 123-143, Springer, New York.
Wilkin, J. L., J. V Mansbridge, and J. S. Godfrey (1995), Pacific Ocean heat transport at 24°N in a high-resolution global model, J. Phys. Oceanogr., 25, 2204-2214.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.