[en] A spectroscopic study of the optical nonlinearity of PbSe colloidal solutions was performed with the Z-scan technique at wavelength intervals of 1200–1350 and 1540–1750 nm. While nonlinear
absorption remains below the detection threshold, the third order nonlinear refractive index n2
shows clear resonances, somewhat blueshifted relative to the exciton transitions in the absorbance spectrum. The occurrence of thermal effects is ruled out by time-resolved measurements. At 1.55 m, measured resonant n2 values exceed typuial blk semiconductor values by two orders of magnitude. At high optical intensity, the refractive index change saturates, indicating that statefilling lies at the origin of the observed effect.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Moreels, Iwan; Universiteit Gent - Ugent > Physics and Chemistry of Nanostructures
Hens, Zeger; Universiteit Gent - Ugent > Physics and Chemistry of Nanostructures
Kockaert, Pascal; Université Libre de Bruxelles - ULB > Optics and acoustics Departement
Loicq, Jerôme ; Université de Liège - ULiège > CSL (Centre Spatial de Liège)
Van Thourhout, Dries; Universiteit Gent - Ugent - IMEC > Department of information Technology
Language :
English
Title :
Spectroscopy of the nonlinear refractive index of colloidal PbSe nanocrystals
Publication date :
07 November 2006
Journal title :
Applied Physics Letters
ISSN :
0003-6951
eISSN :
1077-3118
Publisher :
American Institute of Physics, Melville, United States - New York
D. F. Qi, M. Fischbein, M. Drndic, and S. Selmic, Appl. Phys. Lett. 86, 093103 (2005).
J. Roither, W. Heiss, D. V. Talapin, N. Gaponik, and A. Eychmuller, Appl. Phys. Lett. 84, 2223 (2004).
H. J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, and V. Klimov, Appl. Phys. Lett. 80, 4614 (2002).
X. C. Wu, R. Y. Wang, B. S. Zou, P. F. Wu, L. Wang, J. R. Xu, and W. Huang, Appl. Phys. Lett. 71, 2097 (1997).
Y. C. Ker, J. H. Lin, and W. F. Hsieh, Jpn. J. Appl. Phys., Part 1 42, 1258 (2003).
J. He, W. Ji, G. H. Ma, S. H. Tang, H. I. Elim, W. X. Sun, Z. H. Zhang, and W. S. Chin, J. Appl. Phys. 95, 6381 (2004).
R. Prasanth, J. E. M. Haverkort, A. Deepthy, E. W. Bogaart, J. van der Tol, E. A. Patent, G. Zhao, Q. Gong, P. J. van Veldhoven, R. Notzel, and J. H. Wolter, Appl. Phys. Lett. 84, 4059 (2004).
P. T. Guerreiro, S. Ten, N. F. Borrelli, J. Butty, G. E. Jabbour, and N. Peyghambarian, Appl. Phys. Lett. 71, 1595 (1997).
I. Gerdova and A. Hache, Opt. Commun. 246, 205 (2005).
J. Loicq, Y. Renotte, J. L. Delplancke, and Y. Lion, New J. Phys. 6, 32 (2004).
J. M. Pietryga, R. D. Schaller, D. Werder, M. H. Stewart, V. I. Klimov, and J. A. Hollingsworth, J. Am. Chem. Soc. 126, 11752 (2004).
C. B. Murray, S. H. Sun, W. Gaschler, H. Doyle, T. A. Betley, and C. R. Kagan, IBM J. Res. Dev. 45, 47 (2001).
M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, IEEE J. Quantum Electron. 26, 760 (1990).
See EPAPS Document No. E-APPLAB-89-204645 for sizing curve, fitting procedure, calculation of the saturation intensity, and n2 spectrum of oleic acid. This document can be reached via a direct link in the online article's HTML reference section or via the EPAPS homepage (http://www.aip.org/pubservs/ epaps. html).
T. Takagahara, Phys. Rev. B 36, 9293 (1987).
L. Banyai, Y. Z. Hu, M. Lindberg, and S. W. Koch, Phys. Rev. B 38, 8142 (1988).
M. Dinu, F. Quochi, and H. Garcia, Appl. Phys. Lett. 82, 2954 (2003).
A. Villeneuve, C. C. Yang, G. I. Stegeman, C. H. Lin, and H. H. Lin, Appl. Phys. Lett. 62, 2465 (1993).
R. D. Schaller, M. A. Petruska, and V. I. Klimov, J. Phys. Chem. B 107, 13765 (2003).