[en] The Far Ultraviolet (FUV) imaging system on board the IMAGE satellite provides a global view of the north auroral region in three spectral channels, including the SI 12 camera sensitive to Doppler shifted Lyman-alpha emission. FUV images are used to produce instantaneous maps of electron mean energy and energy fluxes for precipitated protons and electrons. We describe a method to calculate ionospheric Hall and Pedersen conductivities induced by auroral proton and electron ionization based on a model of interaction of auroral particles with the atmosphere. Different assumptions on the energy spectral distribution for electrons and protons are compared. Global maps of ionospheric conductances due to instantaneous observation of precipitating protons are calculated. The contribution of auroral protons in the total conductance induced by both types of auroral particles is also evaluated and the importance of proton precipitation is evaluated. This method is well adapted to analyze the time evolution of ionospheric conductances due to precipitating particles over the auroral region or in particular sectors. Results are illustrated with conductance maps of the north polar region obtained during four periods with different activity levels. It is found that the proton contribution to conductance is relatively higher during quiet periods than during substorms. The proton contribution is higher in the period before the onset and strongly decreases during the expansion phase of substorms. During a substorm which occurred on 28 April 2001, a region of strong proton precipitation is observed with SI 12 around 14:00MLT at similar to75degrees MLAT. Calculation of conductances in this sector shows that neglecting the protons contribution would produce a large error. We discuss possible effects of the proton precipitation on electron precipitation in aurora] arcs. The increase in the ionospheric conductivity, induced by a former proton precipitation can reduce the potential drop along field lines in the upward field-aligned currents by creating an opposite polarization electric field. This feedback mechanism possibly reduces the electron acceleration.
Coumans, Valérie ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Hubert, Benoît ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Meurant, M.
Mende, S. B.; University of California, Berkeley > SSL
Language :
English
Title :
Global auroral conductance distribution due to electron and proton precipitation from IMAGE-FUV observations
Publication date :
2004
Journal title :
Annales Geophysicae
ISSN :
0992-7689
eISSN :
1432-0576
Publisher :
European Geophysical Soc, Katlenburg-Lindau, Germany
Atkinson, G.: Auroral arcs: Result of the interaction of a dynamic magnetosphere with the ionosphere, J. Geophys. Res., 75, 4746-4755, 1970.
Basu, B., Jasperse, J. R., Robinson, R. M., Vondrak, R. R., and Evans, D. S.: Linear transport theory of auroral proton precipitation: A comparison with observations, J. Geophys, Res., 92, 5920-5932, 1987.
Bilitza, D.: International Reference Ionosphere 1990, NSSDC 90-22, Nat, Space Sci. Data Cent., Greenbelt, Md, 1990.
Brekke, A. and Hall, C.: Auroral ionospheric quiet summer time conductances, Ann. Geophys., 6, 361-376, 1988.
Brekke, A., Hall, C., and Hansen, T. L.: Auroral ionospheric conductances during disturbed conditions, Ann. Geophys., 7, 269-280, 1989.
Burch, J. L.: Image Mission Overview, Space Science Reviews, 91, 1-14, 2000.
Codrescu, M. V., Fuller-Rowell, T. J., Roble, R. G., and Evans, D. S.: Medium energy particle precipitation influences on the mesosphere and lower thermosphere, J. Geophys. Res., 102, 19 977-19 987, 1997.
Collin, H. L., Peterson, W. K., Lennartsson, O. W., and Drake, J. F.: The seasonal variation of the auroral ion beams, Geophys. Res. Lett., 25, 4071-4074, 1998.
Coumans, V., Gérard, J.-C., Hubert, B., and Evans, D. S.: Electron and proton excitation of the FUV aurora: Simultaneous IMAGE and NOAA observations, J. Geophys. Res., 107, 1347, doi: 10.1029/2001JA009233, 2002.
Decker, D. T., Kozelov, B. V., Basu, B., Jasperse, J. R., and Ivanov, V. E.: Collisional degradation of the proton-H atom fluxes in the atmosphere: A comparison of theoretical techniques, J. Geophys. Res., 101, 26 947-26 960, 1996.
Evans, D. S., Maynard, N. C., Trøim, J., Jacobsen, T., and Egeland, A.: Auroral vector electric field and particle comparisons. 2. Electrodynamics of an arc, J. Geophys. Res., 82, 2235-2249, 1977.
Frey, H. U., Mende, S. B., Carlson, C. W., Gérard, J.-C., Hubert, B., Spann, J., Gladstone, R., and Immel, T. J.: The electron and proton aurora as seen by IMAGE-FUV and FAST, Geophys. Res. Lett., 28, 1135-1138, 2001.
Fuller-Rowell, T. J. and Evans, D. S.: Height-integrated Pedersen and Hall conductivity patterns inferred from the TIROS-NOAA satellite data, J. Geophys. Res., 92, 7606-7618, 1987.
Galand, M., Roble, R. G., and Lummerzheim, D.: Ionization by energetic protons in thermosphere-ionosphere electrodynamics general circulation model, J. Geophys. Res., 104, 27973-27989, 1999.
Galand, M. and Richmond, A. D.: Ionospheric electrical conductances produced by auroral proton precipitation, J. Geophys. Res., 106, 117-126, 2001a.
Galand, M., Fuller-Rowell, T. J., and Codrescu, M. V.: Response of the upper atmosphere to auroral protons, J. Geophys. Res., 106, 127-139, 2001b.
Gérard, J.-C., Hubert, B., Bisikalo, D. V., and Shematovich, V. I.: A model of Lyman-α line profile in the proton aurora, J. Geophys. Res., 105, 15 795-15 805, 2000.
Gérard, J.-C., Hubert, B., Meurant, M., Shematovich, V. I., Bisikalo, D. V., Frey, H., Mende, S., Gladstone, G. R., and Carlson, C. W.: Observation of the proton aurora with IMAGE FUV imager and simultaneous ion flux in situ measurements, J. Geophys. Res., 106, 28 939-28 948, 2001.
Gjerloev, J. W. and Hoffman, R. A.: Height-integrated conductivity in auroral substorms, 1. Data, J. Geophys. Res., 105, 215-226, 2000a.
Gjerloev, J. W. and Hoffman, R. A.: Erratum: "Height-integrated conductivity in auroral substorms, 1. Data", J. Geophys. Res., 105, 10675-10676, 2000b.
Gjerloev, J. W. and Hoffman, R. A.: Height-integrated conductivity in auroral substorms, 2. Modeling, J. Geophys. Res., 105, 227-235, 2000c.
Hardy, D. A., Gussenhoven, M. S., and Holeman, E.: A statistical model of auroral electron precipitation, J. Geophys. Res., 90, 4229-4248, 1985.
Hardy, D. A., Gussenhoven, M. S., Raistrick, R., and McNeil, W. J.: Statistical and functional representations of the pattern of auroral energy flux, number flux, and conductivity, J. Geophys. Res., 92, 12 275-12 294, 1987.
Hardy, D. A., Gussenhoven, M. S., and Brautigam, D.: A statistical model of auroral ion precipitation, J. Geophys. Res., 94, 370-392, 1989.
Hardy, D. A., McNeil, W., Gussenhoven, M. S., and Brautigam, D.: A statistical model of auroral ion precipitation, 2. Functional representation of the average patterns, J. Geophys. Res., 96, 5539-5548, 1991.
Hedin, A. E.: Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159-1172, 1991.
Horwitz, J. L., Doupnik, J. R., and Banks, P. M.: Chatanika radar observations of the latitudinal distributions of auroral zone electric fields, conductivities, and currents, J. Geophys. Res., 83, 1463-1481, 1978.
Hubert, B., Gérard, J. C., Bisikalo, D. V., Shematovich, V. I., and Solomon, S. C.: The role of proton precipitation in the excitation of the auroral FUV emissions, J. Geophys. Res., 106, 21 475-21 494, 2001.
Hubert, B., Gérard, J. C., Evans, D. S., Meurant, M., Mende, S. B., Frey, H. U., and Immel, T. J.: Total electron and proton energy input during auroral substorms: Remote sensing with IMAGE-FUV, J. Geophys. Res., 107. doi: 10.1029/2001JA009229, 2002.
Immel, T., Craven, J. D., and Nicholas, A. C.: An empirical model of the OI FUV dayglow from DE-1 images, J. Atmos. Sol.-Terr. Phy., 62, 47-64, 2000.
Inhester, B., Untiedt, J., Segatz, M., and Kürschner, M.: Direct determination of the local ionospheric hall conductance distribution from two-dimensional electric and magnetic field data, J. Geophys. Res., 97, 4073-4084, 1992.
Kosch, M. J., Hagfors, T., and Schlegel, K.: Extrapolating EISCAT Pedersen conductances to other parts of the sky using groundbased TV auroral images, Ann. Geophys., 16, 583-588, 1998.
Lester, M., Davies, J. A., and Virdi, S.: High-latitude Hall and Pedersen conductances during substorm activity in the SUNDIAL-ATLAS campaign, J. Geophys, Res., 101, 26 71926 728, 1996.
Liou, K., Newell, P. T., and Meng, C.-I: Seasonal effects on auroral particle acceleration and precipitation, J. Geophys. Res., 106, 5531-5542, 2001.
Lummerzheim, D., Rees, M. H., Craven, D. J., and Frank L. A.: Ionospheric conductances derived from DE-1 auroral images, J. Atm. Terr. Phys., 53, 281-292, 1991.
Lyons, L. R.: Formation of auroral arcs via magnetosphere-ionosphere coupling, Rev. Geophys., 30, 93-112, 1992.
Lysak, R. L.: Coupling of the dynamic ionosphere to auroral flux tubes, J. Geophys. Res., 91, 7047-7056, 1986.
Marov, M. Y., Shematovich, V. I., Bisikalo, D. V., and Gérard, J.-C.: Nonequilibrium processes in planetary and cometary atmosphere: Theory and applications, Kluwer Acad., Norwell, Mass., 1997.
Mende, S. B., Vondrak, R. R., Eather, R. H., Rees, M. H., and Robinson, R. M.: Optical mapping of ionospheric conductance, J. Geophys. Res., 89, 1757-1767, 1984.
Mende, S. B., Heetderks, H., Frey, H. U., Lampton, M., Geller, S. P., Habraken, S., Renotte, E., Jamar, C., Rochus, P., Spann, J., Fuselier, S. A., Gérard, J.-C., Gladstone, R., Murphree, S., and Cogger, L.: Far ultraviolet imaging from the IMAGE spacecraft, 1. System Design, Space Science Reviews, 91, 243-270, 2000.
Meurant, M., Gérard, J.-C., Hubert, B., Coumans, V., Shematovich, V. I., Bisikalo, D. V., Gladstone, R., Evans, D. S., and Mende, S. B.: Characterization of the auroral electron precipitation energy during substorms from the IMAGE-FUV imagers and application, J. Geophys. Res., 2003.
Nakano, S., Iyemori, T., and Yamashita, S.,: Net field-aligned currents controlled by the polar ionospheric conductivity, J. Geophys. Res., 107, doi:10.1029/200IJA900177, 2002.
Newell, P. T., Meng, C.-I., and Lyons, K. M.: Suppression of discrete aurorae by sunlight, Nature, 381, 766-767, 1996.
Olsen, N., Sabaka, T. J., and Tøffner-Clausen, L.: Determination of the IGRF 2000 model. Earth Planets Space, 52, 1175-1182, 2000.
Rasmussen, C. E., Schunk, R. W., and Wickwar, V. B.: A photochemical equilibrium model for ionospheric conductivity, J. Geophys. Res., 93, 9831-9840, 1988.
Rees, M. H., Lummerzheim, D., Roble, R. G., Winningham, J. D., Craven, J. D, and Frank, L. A.: Aurora] energy deposition rate, characteristic electron energy, and ionospheric parameters derived from dynamics explorer, I. Images, J. Geophys, Res., 93, 12 841-12860, 1988.
Rees, M. H.: Physics and chemistry of the upper atmosphere, Cambridge Univ. Press, New York, 1989.
Rishbeth, H. and Garriott, O. K.: Introduction to ionospheric physics. Academic Press, New York and London, 1969.
Robinson, R. M., Vondrak, R. R., Miller, K., Dabbs, T., and Hardy, D.: On calculating ionospheric conductances from the flux and energy of precipitating electrons, J. Geophys. Res., 92, 2565-2569, 1987.
Robinson, R. M., Vondrak, R. R., Craven, J. D., Frank, L. A., and Miller, K.: A comparison of ionospheric conductances and auroral luminosities observed simultaneously with the Chatanika radar and the DE 1 auroral imagers, J. Geophys. Res., 94, 5382-5396, 1989.
Sato, T.: A theory of quiet auroral arcs, J. Geophys. Res., 83, 1042-1047, 1978.
Schlegel, K.: Auroral zone E-region conductivities during solar minimum derived from EISCAT data, Ann. Geophys., 6, 129-138, 1988.
Solomon, S. C., Hays, P. B., and Abreu, V.: The auroral 6300 Å emission: observation and modeling, J. Geophys. Res., 93, 9867-9882, 1988.
Spiro, R. W., Reiff, P. H., and Maher, L. J.: Precipitating electron energy flux and auroral zone conductances - an empirical model, J. Geophys. Res., 87, 8215, 1982.
Vickrey, J. F., Vondrak, R. R., and Matthews, S. J.: The diurnal and latitudinal variation of auroral zone ionospheric conductivity, J. Geophys. Res., 86, 65-75, 1981.
Vickrey, J. F., Vondrak, R. R., and Matthews, S. J.: Energy deposition by precipitating particles and joule dissipation in the auroral ionosphere, J. Geophys. Res., 87, 5184-5196, 1982.
Vondrak, R. R. and Robinson, R. M.: Inference of high-latitude ionization and conductivity from AE-C measurements of auroral electron fluxes, J. Geophys. Res., 90, 7505-7512, 1985.
Wallis, D. D. and Budzinski, E. E.: Empirical models of height integrated conductivities, J. Geophys. Res., 86, 125-138, 1981.