[en] The creation of a contour map of the water table in an unconfined aquifer based on head measurements is often the first step in any hydrogeological study. Geostatistical interpolation methods (e.g. kriging) may provide exact interpolated groundwater levels at the measurement locations, but often fail to represent the hydrogeological flow system. A physically based, numerical groundwater model with spatially variable parameters and inputs is more adequate in representing a flow system. Due to the difficulty in parameterization and solving the inverse problem however, an often considerable difference between calculated and observed heads will remain.
In this study the water table interpolation methodology presented by Fasbender et al. (2008), in which the results of a kriging interpolation are combined with information from a drainage network and a Digital Elevation Model (DEM), using the Bayesian Data Fusion framework (Bogaert and Fasbender, 2007), is extended to incorporate information from a tuned analytic element groundwater model. The resulting interpolation is exact at the measurement locations while the shape of the head contours is in accordance with the conceptual information incorporated in the groundwater flow model.
The Bayesian Data Fusion methodology is applied to a regional, unconfined aquifer in Central Belgium. A cross-validation procedure shows that the predictive capability of the interpolation at unmeasured locations benefits from the Bayesian Data Fusion of the three data sources (kriging, DEM and groundwater model), compared to the individual data sources or any combination of two data sources.
Bakker, M., and V. A. Kelson (2009), Writing analytic element programs in Python, Ground Water, 47(6), 828-834, doi:10.1111/j.1745-6584.2009.00583.x.
Bakker, M., and O. D. L. Strack (2003), Analytic elements for multiaquifer flow, J. Hydrol., 271(1-4), 119-129.
Batelaan, O., F. De Smedt, and L. Triest (2003), Regional groundwater discharge: Phreatophyte mapping, groundwater modeling and impact analysis of land-use change, J. Hydrol., 275(1-2), 86-108, doi:10.1016/S0022-1694(03)00018- 20
Bogaert, P., and D. Fasbender (2007), Bayesian data fusion in a spatial prediction context: A general formulation, Stochastic Environ. Res. Risk Assess., 21(6), 695-709, doi:10.1007/s00477-006-0080-3. (Pubitemid 47456747)
Bronders, J., and F. De Smedt (1991), Geostatistische analyse van de hydraulische geleidbaarheid van watervoerende lagen in Midden-België (Geostatistical analysis of hydraulic conductivity of the aquifers in central Belgium), Water, 59(4), 127-132.
Buchanan, S., and J. Triantafilis (2009), Mapping water table depth using geophysical and environmental variables, Ground Water, 47(1), 80-96, doi:10.1111/j.1745-6584.2008.00490.
Chilès, J.-P., and P. Delfiner (1999), Geostatistics: Modeling spatial uncertainty, John Wiley, New York.
Cools, J., Y. Meyus, S. T. Woldeamlak, O. Batelaan, and F. De Smedt (2006), Large-scale GIS-based hydrogeological modelling of Flanders: A tool for groundwater management, Environ. Geol., 50(8), 1201-1209, doi:10.1007/s00254- 006-0292-3. (Pubitemid 44273118)
Cressie, N., and C. K. Wikle (2002), Space-time Kalman filter, in Encyclopedia of Environmetrics, vol.4, edited by A. H. El-Shaarawi and W. W. Piegorsch, pp. 2045-2049, JohnWiley, New York.
Desbarats, A. J., C. E. Logan, M. J. Hinton, and D. R. Sharpe (2002), On the kriging of water table elevations using collateral information from a digital elevation model, J. Hydrol., 255(1-4), 25-38, doi:10.1016/S0022-1694(01) 00504-512
Ehrendorfer, M. (2007), A review of issues in ensemble-based Kalman filtering, Meteorol. Z., 16(6), 795-818, doi:10.1127/0941-2948/2007/0256.
Fasbender, D., L. Peeters, P. Bogaert, and A. Dassargues (2008), Bayesian data fusion applied to water table spatial mapping, Water Resour. Res., 44, W12422, doi:10.1029/2008WR006921.
Haitjema, H. M., and S. Mitchell-Bruker (2005), Are water tables a subdued replica of the topography?, Ground Water, 43(6), 781-786, doi:10.1111/j.1745-6584.2005.00090.
Hill, M. C., and C. R. Tiedeman (2007), Effective Groundwater Model Calibration, John Wiley, New York.
Hunt, R. J. (2006), Groundwater modeling applications using the analytic element method, Ground Water, 44(1), 5-14, doi:10.1111/j.1745-6584.2005.00143.x. (Pubitemid 43163277)
Huysmans, M., L. Peeters, G. Moermans, and A. Dassargues (2008), Relating small-scale sedimentary structures and permeability in a cross-bedded aquifer, J. Hydrol., 361(1-2), 41-51, doi:10.1016/j.jhydrol.2008.07.047.
Karanovic, M., M. Tonkin, and D. Wilson (2009), KT3D-H2O: A program for kriging water level data using hydrologic drift terms, Ground Water, 47(4), 580-586, doi:10.1111/j.1745-6584.2009.00565.x.
Kresic, N. (2006), Hydrogeology and Groundwater Modeling, 2nd ed., CRC Press, Boca Raton, Fla.
Laga, P., S. Louwye, and S. Geets (2001), Paleogene and neogene lithos-tratigraphic units (Belgium), Geol. Belg., 4(1-2), 135-152.
Linde, N., A. Revil, A. Bolève, C. Dagès, J. Castermant, B. Suski, and M. Voltz (2007), Estimation of the water table throughout a catchment using self-potential and piezometric data in a Bayesian framework, J. Hydrol., 334(1-2), 88-98, doi:10.1016/j.jhydrol.2006.09.027. (Pubitemid 46148951)
Poeter, E., M. C. Hill, E. Banta, S. Mehl, and S. Christensen (2005), UCODE 2005 and six other computer codes for universal sensitivity analysis, calibration and uncertainty evaluation, U.S. Geol. Surv. Tech. Methods, 6-A11, 283 pp.
Procter, C., L. Comber, M. Betson, D. Buckley, A. Frost, H. Lyons, A. Riding, and K. Voyce (2006), Identifying crop vulnerability to ground-water abstraction: Modeling and expert knowledge in a GIS, J. Environ. Manage., 81(3), 296-306, doi:10.1016/j.jenvman.2006.01.016. (Pubitemid 44488058)
Reilly, T. E. (2001), System and boundary conceptualization in ground-water flow simulation, U.S. Geol. Surv. Tech. Water Resour. Invest., Book 3, Chap. B8.
Rivest, M., D. Marcotte, and P. Pasquier (2008), Hydraulic head field estimation using kriging with an external drift: A way to consider conceptual model information, J. Hydrol., 361(3-4), 349-361, doi:10.1016/j. jhydrol.2008.08.006.
Strack, O. D. L. (2003), Theory and applications of the analytic element method, Rev. Geophys., 41(2), 1005, doi:10.1029/2002RG000111.
Sun, Y., S. Kang, F. Li, and L. Zhang (2009), Comparison of interpolation methods for depth to groundwater and its temporal and spatial variations in the Minqin oasis of northwest China, Environ. Modell. Software, 24(10), 1163-1170, doi:10.1016/j.envsoft.2009.03.009.
Taany, R., A. Tahboub, and G. Saffarini (2009), Geostatistical analysis of spatiotemporal variability of groundwater level fluctuations in Amman-Zarqa basin, Jordan: A case study, Environ. Geol., 57(3), 525-535, doi:10.1007/s00254-008-1322-0.
Tonkin, M. J., and S. P. Larson (2002), Kriging water levels with a regional-linear and point-logarithmic drift, Ground Water, 40(2), 185-193.