Bellman, R. (1957). Dynamic programming. Princeton University Press.
Bertsekas, D., & Tsitsiklis, J. (1996). Neuro-dynamic programming. Athena Scientific.
Chapman, D., & Kaelbling, L. (1991). Input generalization in delayed reinforcement learning: An algorithm and performance comparisons. Proc. of the 12th International Joint Conference on Artificial Intelligence (IJCAI) (pp. 726-731). Sydney.
Chrisman, L. (1992). Reinforcement learning with perceptual aliasing: The perceptual distinctions approach. National Conference on Artificial Intelligence (pp. 183-188).
Coelho, J., Piater, J., & Grupen, R. (2001). Developing haptic and visual perceptual categories for reaching and grasping with a humanoid robot. Robotics and Autonomous Systems, 37, 195-218.
Gibson, E., & Spelke, E. (1983). The development of perception. Handbook of child psychology vol. iii: Cognitive development, chapter 1, 2-76. Wiley.
Gouet, V., & Boujemaa, N. (2001). Object-based queries using color points of interest. IEEE Work shop on Content-Based Access of Image and Video Libraries (pp. 30-36). Kauai (HI, USA).
Lowe, D. (1999). Object recognition from local scale-invariant features. International Conference on Computer Vision (pp. 1150-1157). Corfu, Greece.
McCallum, R. (1996). Reinforcement learning with selective perception and hidden state. Doctoral dissertation, University of Rochester, New York.
Mikolajczyk, K., & Schmid, C. (2003). A performance evaluation of local descriptors. IEEE Conference on Computer Vision and Pattern Recognition (pp. 257-263). Madison (WI, USA).
Munos, R., & Moore, A. (2002). Variable resolution discretization in optimal control. Machine Learning, 49, 291-323.
Piater, J. (2001). Visual feature learning. Doctoral dissertation, University of Massachusetts, Computer Science Department, Amherst (MA, USA).
Quinlan, J. (1993). C4.5: Programs for machine learning. Morgan Kaufmann Publishers Inc.
Scalzo, F., & Piater, J. (2005). Task-driven learning of spatial combinations of visual features. Proc. of the IEEE Workshop on Learning in Computer Vision and Pattern Recognition. San Diego (CA, USA).
Schmid, C., & Mohr, R. (1997). Local greyvalue invariants for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, 530-535.
Schmid, C., Mohr, R., & Bauckhage, C. (2000). Evaluation of interest point detectors. International Journal of Computer Vision, 37, 151-172.
Schyns, P., & Rodet, L. (1997). Categorization creates functional features. Journ. of Experimental Psychology: Learning, Memory and Cognition, 23, 681-696.
Singh, S., Jaakkola, T., & Jordan, M. (1995). Reinforcement learning with soft state aggregation. Advances in Neural Information Processing Systems (pp. 361-368). MIT Press.
Sutton, R., & Barto, A. (1998). Reinforcement learning, an introduction. MIT Press.
Uther, W. T. B., & Veloso, M. M. (1998). Tree based discretization for continuous state space reinforcement learning. Proc. of the 15th National Conference on Artificial Intelligence (AAAI) (pp. 769-774). Madison (WI, USA).
Watkins, C. (1989). Learning from delayed rewards. Doctoral dissertation, King's College, Cambridge.
Whitehead, S., & Ballard, D. (1991). Learning to perceive and act by trial and error. Machine Learning, 7, 45-83.