Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proceedings IEEE Conf. on Computer Vision and Pattern Recognition. (1999)
Nummiaro, K., Koller-Meier, E., Gool, L.J.V.: An adaptive color-based particle filter. Image Vision Comput. 21(1) (2003) 99-110
Okuma, K., Taleghani, A., de Freitas, N., Little, J.J., Lowe, D.G.: A boosted particle filter: Multitarget detection and tracking. In: ECCV (1). (2004) 28-39
Arnaud, E., Mémin, E.: An efficient rao-blackwellized particle filter for object tracking. (2005)
Bevilacqua, A., Stefano, L.D., Vaccari, S.: Using local and global object's information to track vehicles in urban scenes. In: IEEE International Conference on Advanced Video and Signal based Surveillance (AVSS). (2005)
Leordeanu, M., Collins, R.: Unsupervised learning of object features from video sequences. In: Proc. of CVPR. (2005)
Tang, F., Tao, H.: Object tracking with dynamic feature graph. In: Proc. of ICCV. (2005)
Mathes, T., Piater, J.: Robust non-rigid object tracking using point distribution models. In: Proc. of British Machine Vision Conference (BMVC'05). (2005)
Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models - their training and application. Computer Vision and Image Understanding 61(1) (1995) 38-59
Gouet, V., Boujemaa, N.: About optimal use of color points of interest for content-based image retrieval. Technical report, INRIA Rocquencourt (2002)
Dufournaud, Y., Schmid, C., Horaud, R.: Matching images with different resolutions. In: Proc. of the Conf. on Computer Vision and Pattern Recognition. (2000) 612-618
Kuhn, H.W.: The Hungarian method for solving the assignment problem. Naval Research Logistics Quarterly 2 (1955) 83-97
Saul, L.K., Roweis, S.T.: An introduction to locally linear embedding. (2001)