Free tropospheric measurements of formic acid (HCOOH) from infrared ground-based solar absorption spectra: Retrieval approach, evidence for a seasonal cycle, and comparison with model calculations
[en] The seasonal variation of the free tropospheric volume mixing ratio of formic acid (HCOOH) has been derived from high-spectral-resolution solar absorption spectra recorded with the Fourier transform spectrometer in the U. S. National Solar Observatory facility on Kitt Peak (31.9degreesN, 111.6degreesE, 2.09 km altitude) at a typical spectral resolution of 0.005 cm(-1). The spectra have been analyzed with the SFIT2 algorithm, which is based on a semiempirical application of the optimal estimation method. Absorption by HCOOH is weak in these solar spectra, but successful retrievals have been obtained with a new procedure that fits the HCOOH nu(6) band Q branch at 1105 cm(-1) simultaneously with a window to account for a temperature-sensitive HDO line, which overlaps the HCOOH Q branch. After retaining only the best measurements from a database extending from June 1980 to October 2002 the retrievals show a seasonal variation, with a summer maximum and a winter minimum. Average 2.09-10 km volume mixing ratios binned in 3 month intervals range from a maximum of 792+/-323 parts per trillion by volume (pptv), or 10(-12), in July-September to a minimum of 313+/-175 pptv in October-December, with the uncertainties corresponding to statistical means from daily averages. The results are compared with previously reported measurements and model calculations.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Rinsland, Curtis P.
Mahieu, Emmanuel ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Zander, Rodolphe ; Université de Liège - ULiège > Services généraux (Faculté des sciences) > Relations académiques et scientifiques (Sciences)
Goldman, Aaron
Wood, Steven
Chiou, Linda
Language :
English
Title :
Free tropospheric measurements of formic acid (HCOOH) from infrared ground-based solar absorption spectra: Retrieval approach, evidence for a seasonal cycle, and comparison with model calculations
Publication date :
23 September 2004
Journal title :
Journal of Geophysical Research. Atmospheres
ISSN :
2169-897X
eISSN :
2169-8996
Publisher :
Amer Geophysical Union, Washington, United States - Washington
Arlander, D. W., D. R Croon, J. C. Farmer, F. A. Menzia, and H. H. Westberg (1990), Gaseous oxygenated hydrocarbons in the remote marine troposphere, J. Geophys. Res., 95, 16,391-16,403.
Baboukas, E. D., M. Kanakidou, and N. Mihalopoulos (2000), Carboxylic acids in gas and particulate phase above the Atlantic Ocean, J. Geophys. Res., 105, 14,459-14,471.
Beer, R., T. A. Glavich, and D. M. Rider (2001), Tropospheric emission spectrometer for the Earth Observing System's AURA satellite, Appl. Opt., 40, 2356-2367.
Bernath, P. F. (2001), Atmospheric Chemistry Experiment (ACE): An Overview, edited by J. Demaison, Kluwer Acad., Norwell, Mass.
Brault, J. W. (1978), Solar Fourier transform spectroscopy, in Proceedings of the JOSO Workshop, Future Solar Optical Observations, Needs and Constraints, Firenze, Italy, edited by G. Godoli, G. Noci, and A. Reghin, pp. 32-52, Baccini and Chiappi, Florence, Italy.
Connor, B. J., A. Parrish, J.-J. Tsou, and M. P. McCormick (1995), Error analysis for the ground-based microwave ozone measurements during STOIC, J. Geophys. Res., 100, 9283-9291.
Dawson, G. A., and J. C. Farmer (1980), Soluable atmospheric trace gases in the southwestern United States: 2. Organic species HCHO, HCOOH, CH3COOH, J. Geophys. Res., 93, 5200-5206.
Goldman, A., and J. R. Gillis (1984), Line parameters and line-by-line calculations for molecules of atmospheric interest, progress report, Univ. of Denver, Colo.
Goldman, A., F. H. Murcray, D. G. Murcray, and C. P. Rinsland (1984), A search for formic acid in the upper troposphere: A tentative identification of the 1105 cm-1 ν6 band Q branch in high-resolution balloon-borne solar absorption spectra, Geophys. Res. Lett., 11, 307-310.
Goode, J. G., R. L. Yokelsen, D. E. Ward, R, A. Sussot, R. E. Babbitt, M. A. Davies, and W. M. Hao (2000), Measurements of excess O 3, CO2, CH4, C2H 4, C2H2, HCN, NO, NH3, HCOOH, CH3COOH, HCHO, and CH3H in 1997 Alaskan biomass burning plumes by airborne Fourier transform infrared spectroscopy (AFTIR), J. Geophys. Res., 105, 22,147-22,166.
Grosjean, D. (1989), Organic acids in southern California air: Ambient concentrations, mobile source emissions, in situ formation and removal processes, Environ. Sci. Technol., 23, 1506-1514.
Hanst, P. L., and S. T. Hanst (1993), Database and atlas: Infrared spectra for quantitative analysis of gases, report, Infrared Anal. Inc., Anaheim, Calif.
Hanst, P. L., N. W. Wong, and J. Bragin (1982), A long-path infra-red study of Los Angeles smog, Atmos. Environ., 16, 969-981.
Irion, F. W., et al. (2002), The Atmospheric Trace Molecule Spectroscopy Experiment (ATMOS) version 3 data retrievals, Appl. Opt., 41, 6968-6979.
Jacob, D. J. (1986), Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate, J. Geophys. Res., 91, 9807-9826.
Kawamura, K., L. L. Ng, and I. R. Kaplan (1985), Determination of organic acids (C1-C10) in the atmosphere, motor exhausts, and engine oils, Environ. Sci. Technol., 19, 1082-1086.
Keene, W. C., and J. N. Galloway (1984), Organic acidity in precipitation of North America, Atmos. Environ., 18, 2491-2497.
Keene, W. C., and J. N. Galloway (1988), The biogeochemical cycling of formic and acetic acids through the troposphere: An overview of current understanding, Tellus, Ser. B, 40, 322-344.
Khare, P., N. Kumar, K. M. Kumari, and S. S. Srivastava (1999), Atmospheric formic and acetic acids: An overview, Rev. Geophys., 37 227-248.
Mader, P. P., G. Cann, and L. Palmer (1955), Effects of polluted atmospheres on organic composition in plant tissues, Plant Physiol., 30, 318-323.
Meier, A., A. Goldman, P. S. Manning, T. M. Stephen, C. P. Rinsland, N. B. Jones, and S. W. Wood (2004), Improvements to air mass calculations from ground-based infrared measurements, J. Quant. Spectrose. Radiat. Transfer, 83, 109-113.
Möhler, O., T. Reiner, and F. Arnold (1993), A novel aircraft-based tandem mass spectrometer for atmospheric ion and trace gas measurements, Rev. Sci. Instrum., 64, 1199-1207.
Perrin, A., C. P. Rinsland, and A. Goldman (1999), Spectral parameters for the ν6 region of HCOOH and its measurement in the infrared tropospheric spectrum, J. Geophys. Res., 104, 18,661-18,666.
Reiner, T., O. Möhler, and F. Arnold (1999), Measurements of acetone, acetic acid, and formic acid in the northern midlatitude upper troposphere and lower stratosphere, J. Geophys. Res., 104, 13,943-13,952.
Rinsland, C. P., and A. Goldman (1992), Infrared spectroscopic measurements of tropospheric trace gases, Appl. Opt., 31, 6969-6971.
Rinsland, C. P., M. R. Gunson, J. C. Foster, R. A. Toth, C. B. Farmer, and R. Zander (1091), Stratospheric profiles of heavy water vapor isotopes and CH3D from analysis of the ATMOS Spacelab 3 infrared solar spectra, J. Geophys. Res., 96, 1057-1068.
Rinsland, C. P., et al. (1998), Northern and Southern Hemisphere ground-based infrared spectroscopic measurements of tropospheric carbon monoxide and ethane, J. Geophys. Res., 103, 28,197-28,217.
Rinsland, C. P., A. Goldman, E. Mahieu, R. Zander, J. Notholt, N. B. Jones, D. W. T. Griffith, T. M. Stephen, and L. S. Chiou (2002), Ground-based infrared spectroscopic measurements of carbonyl sulfide: Free tropospheric trends from a 24-year time series of solar absorption measurements, J. Geophys. Res., 107(D22), 4657, doi:10.1029/2002JD002522.
Rodgers, C. D. (2000), Inverse Methods for Atmospheric Sounding: Theory and Practice, World Sci., River Edge, N. J.
Rothman, L. S., et al. (1998), The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation); 1996 edition, J. Quant. Spectrosc. Radiat. Transfer, 60, 665-710.
Rothman, L. S., et al. (2003), The HITRAN Molecular Spectroscopic Database: Edition of 2000 including updates through 2001, J. Quant. Spectrosc. Radiat. Transfer, 82, 5-44.
Shephard, M. W., A. Goldman, S. A. Clough, and E. W. Mlawer (2003), Spectroscopic improvements providing evidence for formic acid in AERI-LBLRTM validation spectra, J. Quant. Spectrosc. Radiat. Transfer, 82, 383-390.
Singh, H., et al. (2000), Distribution and fate of selected oxygenated organic species in the troposphere and lower stratosphere over the Atlantic, J. Geophys. Res., 105, 3795-3805.
Talbot, R. W., K. M. Beecher, R. C. Harriss, and W. R. Cofer III (1988), Atmospheric geochemistry of formic and acetic acids at a mid-latitude temperate site, J. Geophys. Res., 93, 1638-1652.
Talbot, R. W., B. W. Mosher, B. G. Heikes, D. J. Jacob, J. W. Munger, B. C. Daube, W. C. Keene, J. R. Maben, and R. S. Artz (1995), Carboxylic acids in the rural continental atmosphere over the eastern United States during the Shenandoah Cloud and Photochemistry Experiment, J. Geophys. Res., 100, 9335-9343.
Talbot, R. W., et al. (1996), Chemical characteristics of continental outflow from Asia to the troposphere over the western Pacific Ocean during September-October 1991: Results from PEM-West A, J. Geophys. Res., 101, 1713-1725.
Talbot, R. W., et al. (1997a), Large-scale distributions of tropospheric nitric, formic, and acetic acids over the western Pacific basin during wintertime, J. Geophys. Res., 102, 28,303-28,313.
Talbot, R. W., et al. (1997b), Chemical characteristics of continental outflow from Asia to the troposphere over the western Pacific Ocean during February-March 1994: Results from PEM-West B, J. Geophys. Res., 102, 28,255-28,274.
Tuazon, E. C., R. A. Graham, A. M. Winer, R. R. Easton, J. N. Pitts Jr., and P. H. Hanst (1978), A kilometer path length Fourier-transform infrared system for the study of trace pollutants in ambient and synthetic atmospheres, Atmos. Environ., 12, 865-875.
Vander Auwera, J., K. Didriche, A. Perrin, F. Keller, and J.-M. Flaud (2004), Absolute, intensities in the ν6 band of trans-formic acid, paper RB11 presented at the 59th International Symposium on Molecular Spectroscopy, Ohio State Univ., Columbus, Ohio, 21-25 June.
von Kuhlmann, R., M. G. Lawrence, P. J. Crutzen, and P. J. Rasch (2003), A model for studies of tropospheric ozone and nonmethane hydrocarbons: Model evaluation of ozone-related species, J. Geophys. Res., 108 D23), 4729, doi:10.1029/2002JD003348.
Wagner, G., M. Birk, F. Schreier, and J.-M. Flaud (2002), Spectroscopic database for ozone in the fundamental spectral regions, J. Geophys. Res., 107(D22), 4626, doi:10.1029/2001JD000818.
Webster, C. R., and A. J. Heymsfield (2003), Water isotopic ratios D/H, 18O/16O, 17O/16O in and out of clouds map dehydration pathways, Science, 302, 1742-1745.
Worden, H., R. Beer, and C. P. Rinsland (1997), Airborne infrared spectroscopy of 1994 western wildfires, J. Geophys. Res., 102, 1287-1299.
Yokelson, R. J., D. W. T. Griffith, and D. E. Ward (1996), Open-path Fourier transform infrared studies of large-scale laboratory biomass fires, J. Geophys. Res., 101, 21,067-21,080.
Yokelson, R. J., R. Susott, D. E. Ward, J. Reardon, and D. W. T. Griffith (1997), Emissions from smoldering combustion of biomass measured by open-path Fourier transform infirared spectroscopy, J. Geophys. Res., 102, 18,865-18,877.
Yokelson, R. J., J. G. Goode, D. E. Ward, R. A. Susott, R. E. Babbitt, D. D. Wade, I. Bertschi, D. W. T. Griffith, and W. M. Hao (1999), Emissions from formaldehyde, acetic acid, methanol, and other trace gases from biomass fires in North Carolina measured by airborne Fourier transform infrared spectroscopy, J. Geophys. Res., 104, 30,109-30,125.