[en] We use a novel method to evaluate the global opening and closure of magnetic flux in the terrestrial system, and to analyse two interplanetary shock passages that occurred during magnetically quiet periods. We find that, even under these quiet conditions, where the amount of open flux was already low, the compression of the magnetotail by the shocks still created intense but short-lived bursts of flux closure reaching similar to 130 kV, comparable to values obtained shortly after a substorm onset, although no expansion phase developed. The results, supported by a global MHD simulation of the space environment, point to a trigger mechanism of flux closure directly driven by the solar wind compression, independent of the usual substorm expansion phase process.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Hubert, Benoît ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Palmroth, Minna; Finnish Meteorological Institute > Space Physics Group
Laitinen, Tiera V.; Finnish Meteorological Institute > Space Physics Group
Janhunen, Pekka; Finnish Meteorological Institute > Space Physics Group
Milan, Steve E.; University of Leicester > Department of Physics & Astronomy
Grocott, Adrian; University of Leicester > Department of Physics & Astronomy
Cowley, Stanley W.H.; University of Leicester > Department of Physics & Astronomy
Pulkkinen, Tuija; Finnish Meteorological Institute > Space Physics Group
Akasofu, S. I. (1964), The development of the auroral substorm, Planet. Space Sci., 12, 273-282.
Birn, J., K. Schindler, and M. Hesse (2003), Formation of thin current sheets in the magnetotail: Effects of propagating boundary deformations, J. Geophys. Res., 108(A9), 1337, doi:10.1029/2002JA009641.
Blanchard, G. T., C. L. Ellington, L. R. Lyons, and F. J. Rich (2001), Incoherent scatter radar identification of the dayside magnetic separatrix and measurement of magnetic reconnection, J. Geophys. Res., 106, 8185-8196.
Boudouridis, A., E. Zesta, L. R. Lyons, P. C. Anderson, and D. Lummerzheim (2005), Enhanced solar wind geoeffectiveness after a sudden increase in dynamic pressure during southward IMF orientation, J. Geophys. Res., 110, A05214, doi:10.1029/2004JA010704.
Cowley, S. W. H., S. V. Badman, E. J. Bunce, J. T. Clarke, J.-C. Gérard, D. Grodent, C. M. Jackman, S. E. Milan, and T. K. Yeoman (2005), Reconnection in a rotation-dominated magnetosphere and its relation to Saturn's auroral dynamics, J. Geophys. Res., 110, A02201, doi:10.1029/2004JA010796.
Dungey, J. W. (1961), Interplanetary field and the auroral zones, Phys. Res. Lett., 6, 47.
Hubert, B., J. C. Gérard, S. A. Fuselier, and S. B. Mende (2003), Observation of dayside subauroral proton flashes with the IMAGE-FUN imagers, Geophys. Res. Lett., 30(3), 1145, doi:10.1029/2002GL016464.
Hubert, B., S. E. Milan, A. Grocott, C. Blockx, S. W. H. Cowley, and J.-C. Gérard (2006), Dayside and nightside reconnection rates inferred from IMAGE FUV and Super Dual Auroral Radar Network data, J. Geophys. Res., 111, A03217, doi:10.1029/2005JA011140.
Huttunen, K. E. J., J. Slavin, M. Collier, H. E. J. Koskinen, A. Szabo, E. Tanskanen, A. Balogh, E. Lucek, and H. Rm̀e (2005), Cluster observation of sudden impulses in the magnetotail caused by interplanetary shocks and pressure increases, Ann. Geophys., 23, 609-624.
Janhunen, P. (2000), A positive conservative method for magnetohydrodynamics based on HLL and Roe methods, J. Comput. Phys., 160, 649-661.
Kivelson, M. G., and C. T. Russel (1997), Introduction to Space Physics, Cambridge Univ. Press, New York.
Laitinen, T. V., T. I. Pulkkinen, M. Palmroth, P. Janhunen, and H. E. J. Koskinen (2005), The magnetotail reconnection region in a global MHD simulation, Ann. Geophys., 23, 3753-3764.
McPherron, R. L. (1970), Growth phase of magnetospheric substorms, J. Geophys. Res., 75, 5592.
Mende, S. B., et al. (2000), Far ultraviolet imaging from the IMAGE spacecraft: 3. Spectral imaging of Lyman alpha and OI 135.6 nm, Space Sci. Rev., 91, 287-318.
Meurant, M., J.-C. Gérard, B. Hubert, V. Coumans, C. Blockx, N. Østgaard, and S. B. Mende (2003), Dynamics of global scale electron and proton precipitation induced by a solar wind pressure pulse, Geophys. Res. Lett., 30(20), 2032, doi:10.1029/2003GL018017.
Milan, S. E., S. W. H. Cowley, M. Lester, D. M. Wright, J. A. Slavin, M. Fillingim, C. W. Carlson, and H. J. Singer (2004), Response of the magnetotail to changes in the open flux content of the magnetosphere, J. Geophys. Res., 109, A04220, doi:10.1029/2003JA010350.
Milan, S. E., J. A. Wild, A. Grocott, and N. C. Draper (2006), Space- and ground-based investigations of solar wind-magnetosphere-ionosphere coupling, Adv. Space Res., in press.
Nagai, T., I. Shinohara, M. Fujimoto, S. Machida, R. Nakamura, Y. Saito, and T. Mukai (2003), Structure of the Hall current system in the vicinity of the magnetic reconnection site, J. Geophys. Res., 108(A10), 1357, doi:10.1029/2003JA009900.
Ruohoniemi, J. M., and K. B. Baker (1998), Large-scale imaging of high-latitude convection with Super Dual Auroral Radar Network HF radar observations, J. Geophys. Res., 103, 20,797-20,811.