[en] The Ordovician is known as a period with high temperatures and high sea levels and a cooling event at the
end of the period, leading to the Hirnantian glaciation and the !rst of the ‘big !ve’ mass extinctions of marine
life. The cause of this cooling event remains unclear. Several authors correlate it with a drop in atmospheric
pCO2 to a threshold permitting the ice accumulation on the Gondwana supercontinent. However, what are
the reasons of the atmospheric pCO2 decrease? Here, we follow the hypothesis initiated by Barnes (2004)
that an Ordovician superplume event occurred during the Middle to Late Ordovician. Such an event would
not only have a large impact on the Ordovician biodiversi!cation (Barnes, 2004) but it would also be
responsible for the climatic upheaval during the Late Ordovician by the emplacement of a low latitudinal
continental basaltic province that had an impact on the atmospheric pCO2. There is no direct evidence of a
superplume event or of basaltic traps and the present study is therefore a hypothetical modelling approach
where we demonstrate with a numerical box model, including carbon, alkalinity and phosphorus cycles
coupled with a 1D climate model (energy balance model-EBM) (François and Walker,1992), that such a
scenario allows to explain both the mid-Ashgill (Katian) global warming event, known as the Boda Event
(Fortey and Cocks, 2005), and the subsequent Late Ordovician (Hirnantian) glaciation. Because silicate
weathering is enhanced upon warm and wet climate, we try to constrain the size and the latitudinal
emplacement of the basaltic province leading to a suf!cient consumption of atmospheric pCO2 to the
threshold proposed by Herrmann et al. (2004 a, b) to initiate a glaciation on Gondwana.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Lefebvre, Vincent
Servais, Thomas
François, Louis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Averbuch, Olivier
Language :
English
Title :
Did a Katian Large Igneous Province trigger the Late Ordovician glaciation ? A hypothesis tested with a carbon cycle model
Armstrong H.A., Baldini J., Challands T.J., Gröcke D.R., Owen A.W. Response of the Inter-tropical Convergence Zone to Southern Hemisphere cooling during Upper Ordovician glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 2009, 284:227-236.
Barnes C. Was there an Ordovician superplume event ?. The Great Ordovician Biodiversification Event 2004, 77-80. Columbia University Press, New York. B.D. Webby, F. Paris, M. Droser, I. Percival (Eds.).
Barnes C.R., Fortey R.A., Williams S. The pattern of global bio-events during the Ordovician period. Global Events and Event Stratigraphy in the Phanerozoic 1996, 139-172. Springer-Verlag, New York. O. Walliser (Ed.).
Bergström S.M., Huff W., Kolata D., Bauert H. Nomenclature, stratigraphy, chemical fingerprinting, and real distribution of some middle Ordovician k-bentonites in Baltoscandia. Geologiska Föreningens i Stockholm Förhandlingar (GFF) 1995, 117:1-13.
Berner R.A. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta 2006, 70:5653-5664.
Brenchley P.J. The late Ordovician extinction. Mass Extinction: Processes and Evidences 1989, 104-132. Belhaven Press, London. S.K. Donovan (Ed.).
Brenchley P.J., Carden G.A.F., Marshall J.D. Environmental changes associated with the 'first strike' of the late Ordovician mass extinction. Modern Geology 1995, 20:69-82.
Caldeira K., Rampino M. The mid-Cretaceous super plume. Geophysical Research Letters 1991, 18:987-990.
Challands T.J., Armstrong H.A., Maloney D.P., Davies J.R., Wilson D., Owen A.W. Organic-carbon deposition and coastal upwelling at mid-latitude during the Upper Ordovician (Late Katian): a case study from the Welsh Basin, UK. Palaeogeography, Palaeoclimatology, Palaeoecology 2009, 273:395-410.
Condie K.C. Mantle Plumes and Their Record in Earth History 2001, Cambridge University Press, Cambridge.
Courtillot V., Olson P. Mantle plumes link magnetic superchrons to Phanerozoic mass depletion events. Earth and Planetary Science Letters 2007, 260:495-504.
Courtillot V.E., Renne P.R. On the ages of flood basalt events. Compte Rendus Geoscience 2003, 335:113-140.
Delabroye A., Vecoli M. The end-Ordovician glaciation and the Hirnantian stage: a global review and questions about Late Ordovician event stratigraphy. Earth Science Reviews 2010, 98:269-282.
Dessert C., Dupré B., François L.M., Schott J., Gaillardet J., Chakrapani G., Bajpai S. Erosion of Deccan Traps determined by river geochemistry: impact on the global climate and the 87Sr/86Sr ratio of seawater. Earth and Planetary Science Letters 2001, 188:459-474.
Dessert C., Dupré B., Gaillardet J., Francois L.M., Allègre C.J. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chemical Geology 2003, 202:257-273.
Diester-Haass L., Billups K., Gröcke R., François L., Lefebvre V., Emeis K.C. Mid-Miocene paleoproductivity in the Atlantic Ocean and implications for the global carbon cycle. Paleoceanography 2009, 24:PA1209. 10.1029/2008PA001605.
Finney S., Berry W.B.N., Cooper J.D., Ripperdan R.L., Sweet W., Jacobson S., Soufiane A., Achab A., Noble P. Late Ordovician mass extinction: a new perspective from stratigraphic sections in central Nevada. Geology 1999, 27:215-218.
Fortey R.A., Cocks L.R.M. Late Ordovician global warming-the Boda event. Geology 2005, 33:405-408.
François L.M., Walker J.C.G. Modelling the Phanerozoic carbon cycle and climate: constraints from the 87Sr/86Sr isotopic ratio of seawater. American Journal of Science 1992, 292:81-135.
François L.M., Grard A., Goddéris Y. Modelling atmospheric CO2 changes at geological time scales. Notebooks on Geology 2005, 1114. Brest. P. Steemans, E. Javaux (Eds.).
François L. Modélisation de l'évolution passée du CO2 atmosphérique et de la végétation 2007, Agrégation de l'enseignement supérieur, Université de Liège.
Freeman K.H., Hayes J.M. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Global Biogeochemical Cycles 1992, 6:185-198.
Froelich P.N., Bender M., Luedtke N., Heath G., DeVries T. The marine phosphorous cycle. American Journal of Science 1982, 282:474-511.
Gaillardet J., Dupre B., Louvat P., Allegre C.J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology 1999, 159:3-30.
Gibbs M., Barron E., Kump L.R. An atmospheric pCO2 threshold for glaciation in the Late Ordovician. Geology 1997, 25:447-450.
Gilliland R.L. Solar evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 1989, 75:35-55. (Global and Planetary Change Section).
Grard A., François L.M., Dessert C., Dupré B., Goddéris Y. Basaltic volcanism and mass extinction at the Permo-Triassic boundary: environmental impact and modeling of the global carbon cycle. Earth and Planetary Science Letters 2005, 234:207-221.
Harper D.A.T. The Ordovician biodiversification: setting an agenda for marine life. Palaeogeography, Palaeoclimatology, Palaeoecology 2006, 232:148-166.
Herrmann A., Haupt B., Patzkowsky M., Seidov D., Slingerland R. Response of Late Ordovician paleoceanography to changes in sea level, continental drift, and atmospheric pCO2: potential causes for long-term cooling and glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 2004, 210:385-401.
Herrmann A., Patzkowsky M., Pollard D. The impact of paleogeography, pCO2, poleward ocean heat transport and sea level change on global cooling during the Late Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology 2004, 206:59-74.
Huff W., Bergström S.M., Kolata D. Gigantic Ordovician ash fall in North America and Europe: biological, tectonomagmatic, and event stratigraphic significance. Geology 1992, 20:875-878.
Kaljo D., Hints L., Martma T., Nõlvak J., Oraspõld A. Late Ordovician carbon isotope trend in Estonia, its significance in stratigraphy and environmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 2004, 210:165-185.
Kump L.R., Arthur M.A., Patzkowsky M., Gibbs M., Pinkus D., Sheehan P. A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology 1999, 152:173-187.
Martin R.E. Cyclic and secular variation in microfossil biomineralization: clues to the biogeochemical evolution of Phanerozoic oceans. Global and Planetary Change 1995, 11:1-23.
Melchin M.J., Holmden C. Carbon isotope chemostratigraphy in Arctic Canada: sea-level forcing of carbonate platforme weathering and implications for Hirnantian global correlation. Palaeogeography, Palaeoclimatology, Palaeoecology 2006, 234:186-200.
Millot R., Gaillardet J., Dupré B., Allègre C. The global control of silicate weathering rates and the coupling with physical erosion: new insights from river of the Canadian Shield. Earth and Planetary Science Letters 2002, 196:83-98.
Munnecke A., Servais T. Palaeozoic calcareous plankton: evidence from the Silurian of Gotland. Lethaia 2008, 41:185-194.
Opdyke B.N., Wilkinson B.H. Surface area control of shallow cratonic to deep marine carbonate accumulation. Paleoceanography 1988, 3:685-703.
Parrish J.T. Latitudinal Distribution of Land and Shelf and Absorbed Solar Radiation during the Phanerozoic. Open-file Report (Geological Survey (U.S.)), 85-31 1985.
Pavlov V., Gallet Y. A third superchron during the Early Paleozoic. Journal of International Geoscience 2005, 28:78-84.
Qing H., Barnes C.R., Buhl D., Veizer J. The strontium isotopic composition of Ordovician and Silurian brachiopods and conodonts: relationships to geological events and implications for coeval seawater. Geochimica et Cosmochimica Acta 1998, 62:1721-1733.
Ridgwell A., Zeebe R.E. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth and Planetary Science Letters 2005, 234:299-315.
Ronov A.B. The Earth Sedimentary Shell: quantitative patterns of its structure, composition, and evolution. The Earth sedimentary shell 1980, 1-80. Nauka, Moscow. A.A. Yaroshevskii (Ed.).
Rothman D.H. Atmospheric carbon dioxyde levels for the last 500millionyears. Proceeding of the National Academy of Sciences (PNAS) 2002, 99:4167-4171.
Royer D.L. CO2-forced climate thresholds during the Phanerozoic. Geochimica et Cosmochimica Acta 2006, 70(23):5665-5675.
Saltzman M.R., Young S.Y. Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia. Geology 2005, 33:109-112.
Servais T., Lehnert O., Li J., Mullins G.L., Munnecke A., Nützel A., Vecoli M. The Ordovician biodiversification: revolution in the oceanic trophic chain. Lethaia 2008, 41:99-109.
Servais T., Harper D.A., Li J., Munnecke A., Owen A.W., Sheehan P.M. Understanding the Great Ordovician Biodiversification Event (GOBE): influence of paleogeography, paleoclimate or paleoecology?. GSA Today 2009, 19:4-10.
Sharma M. Siberian traps. Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism 1997, 273-295. American Geophysical Union Monograph, Washington. J. Mahoney, M. Coffin (Eds.).
Shields G.A., Carden G.A.F., Veizer J., Meidla T., Rong J.-Y., Li R.-Y. Sr, C, and O isotope geochemistry of Ordovician brachiopods: a major isotopic event around the Middle-Late Ordovician transition. Geochimica and Cosmochimica Acte 2003, 67:2005-2025.
Vaughan A.P.M., Scarrow J.H. Ophiolite obduction pulses as a proxy indicator of superplume events?. Earth and Planetary Science Letters 2003, 213:407-416.
Vennin E., Alvaro J.J., Villas E. High-latitude pelmatozoan-bryozoan mud-mounds from the Ordovician northern Gondwana platform. Geological Journal 1998, 33:121-140.
Villas E., Vennin E., Alvaro J.J., Hammann W., Herrera Z.A., Piovano E.L. The late Ordovician sedimentation as a major triggering factor of the Hirnantian glaciation. Bulletin de la Société Géologique de France 2002, 173:569-578.
Wallmann K. Controls on the Cretaceous and Cenezoic evolution of seawater composition, atmospheric CO2 and climate. Geochimica et Cosmochimica Acta 2001, 65:3005-3025.
Wold C.N., Hay W.W. Estimating ancient sediment. American Journal of Science 1990, 290:1069-1089.
Yapp C.J., Poths H. Carbon isotopes in continental weathering environments and variation in ancient CO2 pressure. Earth and Planetary Science Letters 1996, 137:71-82.
Young S.A., Saltzman M.R., Foland K.A., Linder J.S., Kump L.R. A major drop in seawater 87Sr/86Sr during the Middle Ordovician (Darriwilian): links to volcanism and climate ?. Geology 2009, 37:951-954.