Abstract :
[en] The cogelation process, i.e. the co-polymerization of a metal complex with the gel precursors, was used for the synthesis of transition metal-doped resorcinol-formaldehyde gels. The aim of this process is to anchor the metal to the polymer so that the former does not sinter during the pyrolysis step leading to porous carbon. Cu-, Ni-, Pd- or Pt-loaded gels were prepared by this technique. After drying and pyrolysis, Pd and Pt were obtained as metal nanoparticles (2-5 nm in diameter) inserted in the carbon nodules, when the complexing agent and the synthesis conditions were well chosen. These small metal particles were inaccessible to reactive gases, probably due to carbon deposit at the metal surface during pyrolysis: CO almost did not chemisorb. Oxidation of the support or pyrolysis under reductive atmosphere was applied to the metal-doped gels and carbons in order to make the surface of the metal particles accessible, but these treatments develop the macropores only. The cogelation process is then suitable to prepare metal nanoparticles protected from the outside by encapsulation in the carbon matrix. (C) 2007 Elsevier B.V. All rights reserved.
Scopus citations®
without self-citations
16