biomaterial; nanomedicine; carbon nanoparticle; self-assembly in solution
Abstract :
[en] To improve the efficiency of orally delivered vaccines, PEGylated PLGA-based nanoparticles displaying RGD molecules at their surface were designed to target human M cells. RGD grafting was performed by an original method called "photografting" which covalently linked RGD peptides mainly on the PEG moiety of the PCL-PEG, included in the formulation. First, three non-targeted formulations with size and zeta potential adapted to M cell uptake and stable in gastro-intestinal fluids, were developed. Their transport by an in vitro model of the human Follicle associated epithelium (co-cultures) was largely increased as compared to mono-cultures (Caco-2 cells). RGD-labelling of nanoparticles significantly increased their transport by co-cultures. due to interactions between the RGD ligand and the I intregrins detected at the apical surface of co-cultures. In vivo studies demonstrated that RGD-labelled nanoparticles particularly concentrated in M cells. Finally, ovalbumin-loaded nanoparticles were orally administrated to mice and induced an IgG response, attesting antigen ability to elicit an immune response after oral delivery.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Garinot, Marie; The Catholic University of Louvain (UCL) > Unité de Pharmacie Galénique
Fievez, Virginie; The Catholic University of Louvain (UCL) > Unité de Pharmacie Galénique et Laboratoire de Biochimie cellulaire
Pourcelle, Vincent; The Catholic University of Louvain (UCL) > Unité de Chimie Organique et Médicinale
Stoffelbach, François; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
des Rieux, Anne; The Catholic University of Louvain (UCL) > Unité de Pharmacie Galénique et Laboratoire de Biochimie cellulaire
Plapied, Laurence; The Catholic University of Louvain (UCL) > Unité de Pharmacie Galénique et Laboratoire de Biochimie cellulaire
Theate, Ivan; The Catholic University of Louvain (UCL), Cliniques Universitaires Saint-Luc > Department of Pathology
Freichels, Hélène ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Jérôme, Christine ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Marchand-Brynaert, Jacqueline; The Catholic University of Louvain (UCL) > Unité de Chimie Organique et Médicinale
Schneider, Yves-Jacques; The Catholic University of Louvain (UCL) > Unité de Chimie Organique et Médicinale
Preat, Véronique; The Catholic University of Louvain (UCL) > Unité de Pharmacie Galénique
Language :
English
Title :
PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination
Mestecky J., Bienenstock J., Lamm M., Mayer L., McGhee J., and Strober W. Mucosal Immunity (2005), Elsevier academic Press
des Rieux A., Fievez V., Garinot M., Schneider Y.J., and Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J. Control. Release 116 (2006) 1-27
Brayden D.J., Jepson M.A., and Baird A.W. Keynote review: intestinal Peyer's patch M cells and oral vaccine targeting. Drug Discov. Today 10 (2005) 1145-1157
Kraehenbuhl J.P., and Neutra M.R. Epithelial M cells: differentiation and function. Annu. Rev. Cell. Dev. Biol. 16 (2000) 301-332
Jang M.H., Kweon M.N., Watani K.I., Yamamoto M., Terahara K., Sasakawa C., Suzuki T., Nochi T., Yokota Y., Rennert P.D., Hiroi T., Tamagawa H., Iijima H., Kunisawa J., Yuki Y., and Kiyono H. Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 6110-6115
Neutra M.R. Current concepts in mucosal immunity. V role of M cells in transepithelial transport of antigens and pathogens to the mucosal immune system. Am. J. Physiol. 274 (1998) G785-G791
Siebers A., and Finlay B.B. M cells and the pathogenesis of mucosal and systemic infections. Trends Microbiol. 4 (1996) 22-29
des Rieux A., Ragnarsson E.G.E., Gullberg E., Préat V., Schneider Y.J., and Artursson P. Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. Eur. J. Pharm. Sci. 25 (2005) 455-465
Desai M.P., Labhasetwar V., Amidon G.L., and Levy R.J. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm. Res. 13 (1996) 1838-1845
Jung T., Kamm W., Breitenbach A., Hungerer K.D., Hundt E., and Kissel T. Tetanus toxoid loaded nanoparticles from sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide): evaluation of antibody response after oral and nasal application in mice. Pharm. Res. 18 (2001) 352-360
McClean S., Prosser E., Meehan E., O'Malley D., Clarke N., Ramtoola Z., and Brayden D. Binding and uptake of biodegradable poly-dl-lactide micro-and nanoparticles in intestinal epithelia. Eur. J. Pharm. Sci. 6 (1998) 153-163
Gref R., Minamitake Y., Peracchia M.T., Trubetskoy V., Torchilin V., and Langer R. Biodegradable long-circulating polymeric nanospheres. Science 263 (1994) 1600-1603
Nguyen C.A., Allemann E., Schwach G., Doelker E., and Gurny R. Cell interaction studies of PLA-MePEG nanoparticles. Int. J. Pharm. 254 (2003) 69-72
des Rieux A., Fievez V., Momtaz M., Detrembleur C., Alonso-Sande M., Van Gelder J., Cauvin A., Schneider Y.-J., and Préat V. Influence of M cells on oral delivery of helodermin. J. Control. Release 118 (2007) 294-302
Gullberg E., Leonard M., Karlsson J., Hopkins A.M., Brayden D., Baird A.W., and Artursson P. Expression of specific markers and particle transport in a new human intestinal M-cell model. Biochem. Biophys. Res. Commun. 279 (2000) 808-813
Gullberg E., Keita A.V., Salim S.Y., Andersson M., Caldwell K.D., Soderholm J.D., and Artursson P. Identification of cell adhesion molecules in the human follicle-associated epithelium that improve nanoparticle uptake into the Peyer's patches. J. Pharmacol. Exp. Ther. 319 (2006) 632-639
Kricheldorf H.R., Jonte J.M., and Berl M. Polylactones. 3. Copolymerization of glycolide with l,l-lactide and other lactones. Makromol. Chem. 12 (1985) 25-38
Cao L.W., Wang H., Li J.S., and Zhang H.S. 6-Oxy-(N-succinimidyl acetate)-9-(2′-methoxycarbonyl)fluorescein as a new fluorescent labeling reagent for aliphatic amines in environmental and food samples using high-performance liquid chromatography. J. Chromatogr. A. 1063 (2005) 143-151
Zweers M.L., Engbers G.H., Grijpma D.W., and Feijen J. In vitro degradation of nanoparticles prepared from polymers based on dl-lactide, glycolide and poly(ethylene oxide). J. Control. Release 100 (2004) 347-356
Vangeyte P., and Jérôme R. Amphiphilic block copolymers of high-molecular-weight poly(ethylene oxyde) and either ε-caprolactone or γ-methyl-ε-caprolactone: synthesis and characterization. J. Pharmacol. Exp. Ther. 42 (2004) 1132-1142
Vila A., Gill H., McCallion O., and Alonso M.J. Transport of PLA-PEG particles across the nasal mucosa: effect of particle size and PEG coating density. J. Control. Release 98 (2004) 231-244
Means G.E., and Feeney R.E. Reductive alkylation of amino groups in proteins. Biochemistry 6 (1968) 2192-2201
Dressman J.B., and Reppas C. In vitro-in vivo correlations for lipophilic, poorly water-soluble drugs. Eur. J. Pharm. Sci. 11 (2000) S73-S80
Rescigno M., Urbano M., Valzasina B., Francolini M., Rotta G., Bonasio R., Granucci F., Kraehenbuhl J.P., and Ricciardi-Castagnoli P. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2 (2001) 361-367
des Rieux A., Fievez V., Théate I., Mast J., Préat V., and Schneider Y.-J. An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells. Eur. J. Pharm. Sci. 30 (2007) 380-391
Artursson P. Epithelial transport of drugs in cell culture. I: a model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J. Pharm. Sci. 79 (1990) 476-482
Devouge S., Salvagnini C., and Marchand-Brynaert J. A practical molecular clip for immobilization of receptors and biomolecules on devices' surface: synthesis, grafting protocol and analytical assay. Bioorg. Med. Chem. Lett. 15 (2005) 3252-3256
Lombry C., Marteleur A., Arras M., Lison D., Louahed J., Renauld J.C., Preat V., and Vanbever R. Local and systemic immune responses to intratracheal instillation of antigen and DNA vaccines in mice. Pharm. Res. 21 (2004) 127-135
Foster N., Clark M.A., Jepson M.A., and Hirst B.H. Ulex europaeus 1 lectin targets microspheres to mouse Peyer's patch M-cells in vivo. Vaccine 16 (1998) 536-541
Schulte R., Kerneis S., Klinke S., Bartels H., Preger S., Kraehenbuhl J.P., Pringault E., and Autenrieth I.B. Translocation of Yersinia entrocolitica across reconstituted intestinal epithelial monolayers is triggered by Yersinia invasin binding to beta1 integrins apically expressed on M-like cells. Cell Microbiol. 2 (2000) 173-185
Belvisi L., Bernardi A., Colombo M., Manzoni L., Potenza D., Scolastico C., Giannini G., Marcellini M., Riccioni T., and Castorina M. Targeting integrins: Insights into structure and activity of cyclic RGD pentapeptide mimics containing azabicycloalkane amino acids. Bioorg. Med. Chem. 14 (2006) 169-180
C. Salvagnini, A. Roback, V. Pourcelle, M. Montaz, J. Marchand-Brynaert, Surface functionalization of poly(butylene terephtalate) melt blown filtration membrane by wet chemistry and photo-grafting, J. Biomater. Sci., Polym. (in press).
Pourcelle V., Devouge S., Garinot M., Préat V., and Marchand-Brynaert J. PCL-PEG-based nanoparticles grafted with GRGDS peptide: surface analysis. J. Colloid. Interface Sci. (2007)
Dong Y., and Feng S.S. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials 25 (2004) 2843-2849
Eldridge J.H., Hammond C.J., Meulbroek J.A., Staas J.K., Gilley R.M., and Tice T.R. Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the Peyer's patches. J. Control. Release 11 (1990) 205-214
Shakweh M., Ponchel G., and Fattal E. Particle uptake by Peyer's patches: a pathway for drug and vaccine delivery. Expert Opin. Drug Deliv. 1 (2004) 141-163
Prego C., Garcia M., Torres D., and Alonso M.J. Transmucosal macromolecular drug delivery. J. Control. Release 101 (2005) 151-162
Brayden D.J. Oral vaccination in man using antigens in particles: current status. Eur. J. Pharm. Sci. 14 (2001) 183-189