Delayed GM-CSF treatment stimulates axonal regeneration and functional recovery in paraplegic rats via an increased BDNF expression by endogenous macrophages
[en] Macrophages (monocytes/microglia) could play a critical role in central nervous system repair. We have previously found a synchronism between the regression of spontaneous axonal regeneration and the deactivation of macrophages 3-4 wk after a compression-injury of rat spinal cord. To explore whether reactivation of endogenous macrophages might be beneficial for spinal cord repair, we have studied the effects of granulocyte-macrophage colony stimulating factor (GM-CSF) in the same paraplegia model and in cell cultures. There was a significant, though transient, improvement of locomotor recovery after a single delayed intraperitoneal injection of 2 mu g GM-CSF, which also increased significantly the expression of Cr3 and brain-derived neurotrophic factor ( BDNF) by macrophages at the lesion site. At longer survival delays, axonal regeneration was significantly enhanced in GMCSF-treated rats. In vitro, BV2 microglial cells expressed higher levels of BDNF in the presence of GM-CSF and neurons cocultured with microglial cells activated by GM-CSF generated more neurites, an effect blocked by a BDNF antibody. These experiments suggest that GM-CSF could be an interesting treatment option for spinal cord injury and that its beneficial effects might be mediated by BDNF.-Bouhy, D., Malgrange, B., Multon, S., Poirrier, A. L., Scholtes, F., Schoenen, J., Franzen, R. Delayed GM-CSF treatment stimulates axonal regeneration and functional recovery in paraplegic rats via an increased BDNF expression by endogenous macrophages.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Bouhy, Delphine
Malgrange, Brigitte ; Université de Liège - ULiège > CNCM/ Centre fac. de rech. en neurobiologie cell. et moléc.
Multon, Sylvie ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Neuro-anatomie
Poirrier, Anne-Lise ; Université de Liège - ULiège > Physiologie humaine et physiopathologie
Scholtes, Félix ; Université de Liège - ULiège > Département des sciences cliniques > Neurochirurgie
Schoenen, Jean ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Neuro-anatomie
Franzen, Rachelle ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Neuro-anatomie
Language :
English
Title :
Delayed GM-CSF treatment stimulates axonal regeneration and functional recovery in paraplegic rats via an increased BDNF expression by endogenous macrophages
Publication date :
June 2006
Journal title :
FASEB Journal
ISSN :
0892-6638
eISSN :
1530-6860
Publisher :
Federation Amer Soc Exp Biol, Bethesda, United States - Maryland
Prewitt, C. M., Niesman, I. R., Kane, C. J., and Houle, J. D. (1997) Activated macrophage/microglial cells can promote the regeneration of sensory axons into the injured spinal cord. Exp. Neurol. 148, 433-443
Franzen, R., Schoenen, J., Leprince, P., Joosten, E., Moonen, G., and Martin, D. (1998) Effects of macrophage transplantation in the injured adult rat spinal cord: a combined immunocytochemical and biochemical study. J. Neurosci. Res. 51, 316-327
Rapalino, O., Lazarov-Spiegler, O., Agranov, E., Velan, G. J., Yoles, E., Fraidakis, M., Solomon, A., Gepstein, R., Katz, A., Belkin, M., et al. (1998) Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat. Med. 4, 814-821
Bomstein, Y., Marder, J. B., Vitner, K., Smirnov, I., Lisaey, G., Butovsky, O., Fulga, V., and Yoles, E. (2003) Features of skin-coincubated macrophages that promote recovery from spinal cord injury. J. Neuroimmunol. 142, 10-16
Lindholm, D., Heumann, R., Meyer, M., and Thoenen, H. (1987) Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature 330, 658-659
Hashimoto, M., Nitta, A., Fukumitsu, H., Nomoto, H., Shen, L., and Furukawa, S. (2005) Inflammation-induced GDNF improves locomotor function after spinal cord injury. Neurore. Port. 8, 99-102
Batchelor, P. E., Liberatore, G. T., Wong, J. Y., Porritt, M. J., Frerichs, F., Donnan, G.A., and Howells, D. W. (1999) Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J. Neurosci. 19, 1708-1716
Batchelor, P. E., Porritt, M. J., Martinello, P., Parish, C. L., Liberatore, G. T., Donnan, G. A., and Howells, D. W. (2002) Macrophages and microglia produce local trophic gradients that stimulate axonal sprouting toward but not beyond the wound edge. Mol. Cell Neurosci. 21, 436-453
Dougherty, K. D., Dreyfus, C. F., and Black, I. B. (2000) Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury. Neurobiol. Dis. 7, 574-585
Barouch, R., Appel, E., Kazimirsky, G., and Brodie, C. (2001) Macrophages express neurotrophins and neurotrophin receptors. Regulation of nitric oxide production by NT-3. J. Neuroimmunol. 112, 72-77
Ikeda, O., Murakami, M., Ino, H., Yamazaki, M., Nemoto, T., Koda, M., Nakayama, C., and Moriya, H. (2001) Acute upregulation of brain-derived neurotrophic factor expression resulting from experimentally induced injury in the rat spinal cord. Acta Neuropathol. 102, 239-245
Shibata, A., Zelivyanskaya, M., Limoges, J., Carlson, K.A., Gorantla, S., Branecki, C., Bishu, S., Xiong, H., and Gendelman, H. E. (2003) Peripheral nerve induces macrophage neurotrophic activities: regulation of neuronal process outgrowth, intracellular signaling and synaptic function. J. Neuroimmunol. 142, 112-129
Popovich, P. G., Guan, Z., Wei, P., Huitinga, I., van Rooijen, N., and Stokes, B. T. (1999) Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp. Neurol. 158, 351-365
Watanabe, T., Yamamoto, T., Abe, Y., Saito, N., Kumagai, T., and Kayama, H. (1999) Differential activation of microglia after experimental spinal cord injury. J. Neurotrauma 16, 255-265
Brook, G.A., Plate, D., Franzen, R., Martin, D., Moonen, G., Schoenen, J., Schmitt, A.B., Noth, J., and Nacimiento, W. (1998) Spontaneous longitudinally orientated axonal regeneration is associated with the Schwann cell framework within the lesion site following spinal cord compression injury of the rat. J. Neurosci. Res. 53, 51-65
Collins, H. L., and Bancroft, G. J. (1992) Cytokine enhancement of complement-dependent phagocytosis by macrophages: synergy of tumor necrosis factor-alpha and granulocyte-macrophage colony-stimulating factor for phagocytosis of Cryptococcus neoformans. Eur. J. Immunol. 22, 1447-1454
Saada, A., Reichert, F., and Rotshenker, S. (1996) Granulocyte macrophage colony stimulating factor produced in lesioned peripheral nerves induces the up-regulation of cell surface expression of MAC-2 by macrophages and Schwann cells. J. Cell Biol. 133, 159-167
Kim, J. K., Choi, B. H., Park, H. C., Park, S. R., Kim, Y. S., Yoon, S. H., Park, H. S., Kim, E. Y., and Ha, Y. (2004) Effects of GM-CSF on the neural Progenitor cells. Neuroreport. 15, 2161-2165
Ha, Y., Kim, Y. S., Cho, J. M., Yoon, S. H., Park, S. R., Yoon, H., Kim, E. Y., and Park, H. C. (2005) Role of granulocyte-macrophage colony-stimulating factor in preventing apoptosis and improving functional outcome in experimental spinal cord contusion injury. J. Neurosurg. Spine 2, 55-61
Kamegai, M., Konishi, Y., and Tabira, T. (1990) Trophic effect of granulocyte-macrophage colony-stimulating factor on central cholinergic neurons in vitro. Brain Res. 532, 323-325
Kannan, Y., Moriyama, M., Sugano, T., Yamate, J., Kuwamura, M., Kagaya, A., and Kiso, Y. (2000) Neurotrophic action of interleukin 3 and granulocyte-macrophage colony-stimulating factor on murine sympathetic neurons. Neuroimmunomodulation 8, 132-141
Franzen, R., Bouhy, D., and Schoenen, J. (2004) Nervous system injury: focus on the inflammatory cytokine 'granulocyte-macrophage colony stimulating factor'. Neurosci. Lett. 361, 76-78
Koda, M., Hashimoto, M., Murakami, M., Yoshinaga, K., Ikeda, O., Yamazaki, M., Koshizuka, S., Kamada, T., Moriya, H., Shirasawa, H., et al. (2004) Adenovirus vector-mediated in vivo gene transfer of brain-derived neurotrophic factor (BDNF) promotes rubrospinal axonal regeneration and functional recovery after complete transection of the adult rat spinal cord. J. Neurotrauma 21, 329-37
Martin, D., Schoenen, J., Delree, P., Gilson, V., Rogister, B., Leprince, P., Stevenaert, A., and Moonen, G. (1992) Experimental acute traumatic injury of the adult rat spinal cord by a subdural inflatable balloon: methodology, behavioral analysis, and histopathology. J. Neurosci. Res. 32, 539-550
Basso, D.M., Beattie, M.S., and Bresnahan, J. C. (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma 12, 1-21
Delree, P., Leprince, P., Schoenen, J., and Moonen, G. (1989) Purification and culture of adult rat dorsal root ganglia neurons. J. Neurosci. Res. 23, 198-206
Guner, H., Oktem, M., and Dilek, T. U. (2003) Granulocyte-macrophage colony stimulating factor prior to chemotherapy for advanced epithelial ovarian cancer. Int. J. Gynaecol. Obstet. 83, 317-318
Wu, H.H., Talpaz, M., Champlin, R.E., Pilat, S.R., and Kurzrock, R. (2003) Sequential interleukin 3 and granulocyte-macrophage-colony stimulating factor therapy in patients with bone marrow failure with long-term follow-up of responses. Cancer 98, 2410-2419
Zylinska, K., Mucha, S., Komorowski, J., Korycka, A., Pisarek, H., Robak, T., and Stepien, H. (1999) Influence of granulocyte-macrophage colony stimulating factor on pituitary-adrenal axis (PAA) in rats in vivo. Pituitary 2, 211-216
Stern, A.C., and Jones, T.C. (1992) The side-effect profile of GM-CSF. Infection 20, Suppl. 2, S124-S127
McLay, R.N., Kimura, M., Banks, W.A., and Kastin, A. J. (1997) Granulocyte-macrophage colony-stimulating factor crosses the blood-brain and blood-spinal cord barriers. Brain 120, 2083-2091
Lu, J., Feron, F., Mackay-Sim, A., and Waite, P. M. (2002) Olfactory ensheathing cells promote locomotor recovery after delayed transplantation into transected spinal cord. Brain 125, 14-21
Gris, D., Marsh, D.R., Oatway, M.A., Chen, Y., Hamilton, E.F., Dekaban, G.A., Weaver, L. C. (2004) Transient blockade of the CD11d/CD18 integrin reduces secondary damage after spinal cord injury, improving sensory, autonomic, and motor function. J. Neurosci 24, 4043-51
Hofstetter, C. P., Schwarz, E. J., Hess, D., Widenfalk, J., El Manira, A., Prockop, D. J., and Olson, L. (2002) Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery Proc. Natl. Acad. Sci. U. S. A. 99, 2199-2204
Verdu, E., Garcia-Alias, G., Fores, J., Lopez-Vales, R., and Navarro, X. (2003) Olfactory ensheathing cells transplanted in lesioned spinal cord prevent loss of spinal cord parenchyma and promote functional recovery. Glia 42, 275-286
Plant, G. W., Christensen, C. L., Oudega, M., and Bunge, M. B. (2003) Delayed transplantation of olfactory ensheathing glia promotes sparing/regeneration of supraspinal axons in the contused adult rat spinal cord. J. Neurotrauma 20, 1-16
Bunge, R. P., Puckett, W. R., Becerra, J. L., Marcillo, A., Quencer, and R. M. (1993) Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination. Adv. Neurol. 59, 75-89
You, S. W., Chen, B. Y. Liu, H. L., Lang, B., Xia, J. L., Jiao, X. Y., and Ju, G. (2003) Spontaneous recovery of locomotion induced by remaining fibers after spinal cord transection in adult rats. Restor. Neurol. Neurosci. 21, 39-45
Poirrier, A.L., Nyssen, Y., Scholtes, F., Multon, S., Rinkin, C., Weber, G., Bouhy, D., Brook, G., Franzen, R., and Schoenen, J. (2004) Repetitive transcranial magnetic stimulation improves open field locomotor recovery after low but not high thoracic spinal cord compression-injury in adult rats. J. Neurosci. Res. 75, 253-261
Mabon, P.J., Weaver, L.C., and Dekaban, G. A. (2000) Inhibition of monocyte/macrophage migration to a spinal cord injury site by an antibody to the integrin alphaD: a potential new antiinflammatory treatment. Exp. Neurol. 166, 52-64
Lacroix, S., Chang, L., Rose-John, S., and Tuszynski, M. H. (2002) Delivery of hyper-interleukin-6 to the injured spinal cord increases neutrophil and macrophage infiltration and inhibits axonal growth. J. Comp. Neurol. 454, 213-228
Giulian, D., and Robertson, C. (1990) Inhibition of mononuclear phagocytes reduces ischemic injury in the spinal cord. Ann. Neurol. 27, 33-42
Bracken, M. B., and Holford, T. R. (1993) Effects of timing of methylprednisolone or naloxone administration on recovery of segmental and long-tract neurological function in NASCIS 2. J. Neurosurg. 79, 500-507
Young, W., Kume-Kick, J., and Constantini, S. (1994) Glucocorticoid therapy of spinal cord injury. Ann. N. Y. Acad. Sci. 743, 241-263
Bethea, J.R., Nagashima, H., Acosta, M.C., Briceno, C., Gomez, F., Marcillo, A.E., Loor, K., Green, J., and Dietrich, W. D. (1999) Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J. Neurotrauma 16, 851-63
Hauben, E., and Schwartz, M. (2003) Therapeutic vaccination for spinal cord injury: helping the body to cure itself. Trends Pharmacol. Sci. 24, 7-12
Kipnis, J., Yoles, E., Schori, H., Hauben, E., Shaked, I., and Schwartz, M. (2001) Neuronal survival after CNS insult is determined by a genetically encoded autoimmune response. J. Neurosci. 21, 4564-4571
Ankeny, D. P., McTigue, D. M., Guan, Z., Yan, Q., Kinstler, O., Stokes, B. T., and Jakeman, L. B. (2001) Pegylated Brain-derived neurotrophic factor shows improved distribution into the spinal cord and stimulates locomotor activity and morphological changes after injury. Exp. Neurol. 170, 85-100
Cai, D., Shen, Y., De Bellard, M., Tang, S., and Filbin, M. T. (1999) Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron 22, 89-101
Mamounas, L. A., Altar, C. A., Blue, M. E., Kaplan, D. R., Tessarollo, L., and Lyons, W. E. (2000) BDNF promotes the regenerative sprouting but not the survival on injured serotonergic axons in the adult rat brain. J. Neurosci. 20, 771-782
Beattie, M.S., Bresnahan, J.C., Komon, J., Tovar, C.A., Van Meter, M., Andersn, D.K., Faden, A.I., Hsu, C.Y., Noble, L.J., Salzman, S., and Young, W. (1997) Endogenous repair after spinal cord contusion injuries in the rat. Exp. Neurol. 148, 453-463
Teng, Y.D., Lavik, E. B., Qu, X., Park, K.I., Ourednik, J., Zurakowski, D., Langer, R., and Snyder, E. Y. (2002) Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells Proc. Natl. Acad. Sci. U. S. A. 99, 3024-3029
Nakajima, K., Honda, S., Tohyama, Y., Imai, Y., Kohsaka, S., and Kurihara, T. (2001) Neurotrophin secretion from cultured microglia. J. Neurosci Res 65, 322-331
Schwartz, M., Lazarov-Spiegler, O., Rapalino, O., Agranov, I., Velan, G., and Hadani, M. (1999) Potential repair of rat spinal cord injuries using stimulated homologous macrophages. Neurosurgery 44, 1041-1045
Park, H., Shim, Y., Ha, Y., Yoon, S., Park, S;, Choi, B., and Park, H. (2005) Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of Granulocyte-Macrophage Colony Stimulating Factor. Tissue Engineering 11, 913-922