[en] Ilmenite and magnetite are investigated from the point of view of their distribution, micro-texture, and chemical composition (major and minor elements) in the Bjerkreim-Sokndal massif (Egersund area, South-Rogaland, SW. Norway). This massif is an igneous layered lopolith made up of cumulates of the anorthosite-mangerite suite. The lower part of the massif presents a rhytmic structure.
The microtextures of ilmenite result from simple exsolution of ilmenite-hematite solid solution. Magnetite contains intergrowths of ilmenite formed by oxidation-exsolution of ulvöspinel-magnetite solid-solution.
In the stratigraphic sequence, on a large scale, ilmenite appears first alone, and is then accompanied by magnetite; its hematite content decreases towards the top of the massif, while the titanium content of the magnetite increases. On the scale of the rhythms, similar trends but of a lesser amplitude are also observed.
Evidence of deuteric readjustment of the orthomagmatic composition of the two oxides is provided (1) by the observation of microtextures at the contact betwen grains (zoning of primary ilmenite and rim of secondary ilmenite) (2) by the existence of differences in chemical composition between isolated grains and grains in contact, and (3) bythe determination of the equilibrium temperature by means of the Buddington and Lindsley geothermonmeter.
Reconstruction of the T-fO2 orthomagmatic conditions is provided in two particular levels of the massif shows that the reducing character of the magma increases during differentiation. The sudden changes in the oxide assembalge at the base of the rythmic units reflect a sudden increase in the fO2 of the magma. These increases, as shown by variation in Cr, Ni and Co, are due to recurrences of the basic character of the magma.
The variations of the minor elements Mn, V, Ga, and Zn are interpreted in terms of the influence of the deuteric readjustment. It follows that the ratios Mn/Fe2+ ; Ga/Fe3+, and Zn/Fe2+ increase and that the ratio V/Fe3+ decreases in the magma in the course of differentiation. The distribution of Mn between ilmenite and magnetite is discussed.
Intermittent supplies of undifferentiated magma are proposed as the geological mechanism controlling the chemical recurrencess associated with the rhythmic structure.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Anderson, A. T., 1968. Oxidation of the La Blache Lake titaniferous magnetite deposit. Quebec. J. Geol. 76, 528-47.
Anderson, A. T., 1966. Mineralogy of the Labrieville anorthosite. Quebec. Am. Miner. 51, 1671-1711.
Bowen, N. L., & Tuttle, O. F., 1950. The system NaAISi, Os-KAlSi, 08-H, 0. J. Geol. 58, 489-511.
Buddington, A. F., 1964. Distribution of MnO between coexisting ilmenite and magnetite. In Advancing Frontiers in Geology and Geophysics, Osmania University Press, Hyderabad, India, 233-48.
Buddington, A. F., Fahey, J., & Vusidis, A., 1955. Thermometric and petrogenetic significance of titaniferous magnetite. Am. J. Sei. 253, 497-532.
Buddington, A. F., & Lindsley, D. H., 1964. Iron-titanium oxide minerals and synthetic equivalents. J. Petrology, 5, 310-57.
Carmichael, C. M., 1961. The magnetic properties of ilmenite-hematite crystal. Proc. R. Soc. London, Ser. A, 263, 508-30.
Carstens, H., 1957. Investigation of titaniferous iron ore deposits. Kgl. Norske Videnskab. Selskabs, Skrifter, Pt. I, 3, 3-67; Pt. 2, 4, 3-24.
Duchesne, J. C., 1966. Séparation rapide des minéraux des roches. Ann. Soc. Géol. Belg. 87, 347-56.
Duchesne, J. C., 1969. Les minéraux noirs dans le massif magmatique stratiforme de Bjerkrem-Sogndal (Rogaland) et leur évolution dans la différenciation. Unpublished Dr. Sc. thesis, Liège University.
Duchesne, J. C., 1970a. Sur la provenance de xénolithes d’anorthosites dans le massif de Bjerkrem-Sogndal (Rogaland méridional-Norvège). Ann. Soc. Géol. Belg. 93, 527-44.
Duchesne, J. C., 1970b. Microtextures of Fe-Ti oxides minerals in the South-Rogaland anorthositic complex (Norway). Ann. Soc. Géol. Belg. 93, 523-6.
Eugster, H. P., & Wones, D. R., 1962. Stability relations of the ferruginous biotite, annite. J. Petrology, 3, 82-125.
Lindsley, D. H., 1962. Investigations in the system FeO-Fe, 0,-TiOj. Yb. Carnegie Instn. Wash. 61, 100-6.
Lindsley, D. H., 1963. Equilibrium relations of coexisting pairs of Fe-Ti oxides. Carnegie Instn. Wash. 62, 60-6.
Lister, G. F., 1966. The composition and origin of selected iron-titanium deposits. Econ. Geol. 61, 275-310.
Michot, P., 1951. Essai sur la géologie de la catazone. Bull. Acad. roy. Belg., CL des Sciences, 5th série, 37, 260-76.
Michot, P., 1955. Anorthosites et anorthosites. Bull. Acad. roy. Belg., CL des Sciences. 41, 275-94.
Michot, P., 1960a. La géologie de la catazone: Le problème des anorthosites, la palingenèse basique et la tectonique catazonale dans le Rogaland méridional (Norvège méridionale). Norges Geol. Unders. 212g, 1-54.
Michot, P., 1960b. Le problème des intrusions marginales. Geol. Rundschau 50, 94-105.
Michot, P., 1964. Le magma plagioclasique. Geol. Rundschau. 54, 956-76.
Michot, P., 1970. The geological environment of the anorthosites in South Rogaland (Norway) in ‘The origin of anorthosite and related rocks’. Y. W. Isachsen, cd. N.Y. State Mus. Sei. Serv. Mem. 18, 411-23.
Nockolds, S. R., & Allen, R., 1953, 1954, 1956. The geochemistry of some igneous rocks series. Geochim. cosmochim. Acta 4, 105-42;
Nockolds, S. R., & Allen, R., 1953, 1954, 1956. The geochemistry of some igneous rocks series. Geochim. cosmochim. Acta 5, 245-85;
Nockolds, S. R., & Allen, R., 1953, 1954, 1956. The geochemistry of some igneous rocks series. Geochim. cosmochim. Acta 9, 34-7.
Papezik, V. S., 1965. Geochemistry of some Canadian anorthosites. Geochim. cosmochim. Acta. 29, 673-709.
Ramdohr, P., 1953. Ulvöspinel and its significance in titaniferous iron ores. Econ. Geol. 48, 677-88.
Sweatman, T. R., & Lonû, J. V. P., 1969. Quantitative electron-probe microanalysis of rock-forming minerals. J. Petrology, 10, 332-79.
Taylor, R. W., 1963. Liquidus temperatures in the system FeO-Fe, 0,-FeTi03. J. Am. Ceram. Soc., 46, 276-9.
Vincent, E. A., 1960. Ulvöspinel in the Skaergaard intrusion, Greenland. N. Jb. Miner. Abh., 94, 993-1016.
Vincent, E. A., Phillips, R., 1954. Iron-titanium oxide minerals in layered gabbro of the Skaergaard intrusion East Greenland. Part 1. Chemistry and ore-microscopy. Geochim. cosmochim. Acta, 6 1-26.
Vincent, E. A., Wright, J. B., Chevallier, R., & Mathieu, S., 1957. Heating experiments on some natural titaniferous magnetites. Mineralog. Mag. 21, 624-55.
Wager, L. R., & Mitchell, R. L., 1951. The distribution of trace elements during strong fractionation of basic magma-a further study of the Skaergaard intrusion-East Greenland. Geochim. cosmochim. Acta 1, 129-208.
Wager, L. R., & Mitchell, R. L., Brown, G. M., 1968. Layered igneous rocks. London: Oliver & Boyd.
Wright, J. B., 1961. Solid-solution relationships in some titaniferous iron oxide ores of basic igneous rocks. Mineralog. Mag 32, 778-89.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.