[en] Deposition of multiwalled carbon nanotubes modified by poly(2-vinylpyridine) (CNT-g-P2VP) from aqueous dispersions at low pH is an effective method to prepare homogeneous ultrathin films with a tunable CNTs density. A percolation threshold of 0.25 mu g/cm(2) and a critical exponent alpha = 1.24 have been found from dc conductivity measurements. The sheet resistance value agrees with the percolation theory for 2D films. According to AFM and electrical measurements, even when only 5% of the surface is covered by CNT-g-P2VPs, the sheet resistance is of the order of 1 M Omega/sq, which indicates that conductivity is imparted by a network of an ultralow density. When the film transmittance decreases down to similar to 70% at 550 nm, the occupied surface area is similar to 15% and sheet resistance falls down to similar to 90 k Omega/sq. These data show that undesired in-plane clustering does not occur upon the dispersion casting of the films and that high-quality networks of CNT-g-P2VPs are built up. The electrosteric stabilization of the CNT-g-P2VP dispersions in water at low pH is at the origin of this desired behavior. Although the multiwalled CNT films prepared in this work are less conductive and less transparent than the SWNTs films, they could find applications, e. g., in touch screens, reflective displays, EMI shielding, and static charge dissipation.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Bocharova, Vera; Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany
Kiriy, Anton; Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany
Oertel, Ulrich; Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany
Stamm, Manfred; Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany
Stoffelbach, François; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Jérôme, Robert ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Detrembleur, Christophe ; Université de Liège - ULiège > Departemnent of Chemistry > Center for Education and Research on Macromolecules (CERM)
Language :
English
Title :
Ultrathin transparent conductive films of polymer-modified multiwalled carbon nanotubes
Publication date :
03 August 2006
Journal title :
Journal of Physical Chemistry B
ISSN :
1520-6106
eISSN :
1520-5207
Publisher :
Amer Chemical Soc, Washington, United States - Washington
ESF - European Science Foundation The “Région Wallonne” in the frame of the “Nanotechnologies” program ENABLE BELSPO - SPP Politique scientifique - Service Public Fédéral de Programmation Politique scientifique F.R.S.-FNRS - Fonds de la Recherche Scientifique DFG - Deutsche Forschungsgemeinschaft F.R.S.-FNRS - Fonds de la Recherche Scientifique
Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. Carbon Nanotubes: Synthesis, structure, Properties, and Applications; Springer-Verlag: New York, 2001.
Dai, H. Acc. Chem. Res. 2002, 35, 1035.
Raravikar, N. R.; Vijayaraghavan, A. S.; Keblinski, P.; Schadler, L. S.; Ajayan, P. M. Small 2005, 1, 317.
Lim, S.; Jeong, H.; Park, Y.; Bae, D.; Choi, Y.; Shin, Y.; Kim, W.; An, K.; Lee, Y. J. Vac. Sci. Technol. A 2001, 19, 1786.
Park, J.-U.; Meitl, M. A.; Hur, S.-H.; Usrey, M. L.; Strano, M. S.; Kenis, P. J. A.; Rogers, J. A. Angew. Chem., Int. Ed. 2006, 45, 581.
Panhuis, M.; Gowrisanker, S.; Vanesko, D. J.; Mire, C. A.; Jia, H.; Xie, H.; Baughman, R. H.; Musselman, I. H.; Gnade, B. E.; Dieckmann, G. R.; Draper, R. K. Small 2005, 1, 820.
Hirsch, A. Angew. Chem., Int. Ed. 2002, 41, 1853.
Star, A.; Steuermann, D. J.; Heath, R.; Stoddard, J. F. Angew. Chem., Int. Ed. 2002, 41, 2508.
Viswanathan, G.; Chakrapani, N.; Yang, H.; Wei, B.; Chung, H.; Cho, K.; Ryu, C. Y.; Ajayan, P. M. J. Am. Chem. Soc. 2003, 125, 9258.
Yao, Z.; Braidy, N.; Botton, G. A.; Adronov, A. J. Am. Chem. Soc. 2003, 125, 16015.
Qin, S.; Qin, D.; Ford, W. T.; Resasco, D. E.; Herrera, J. E. J. Am. Chem. Soc. 2004, 126, 170.
Kong, H.; Gao, C.; Yan, D. J. Am. Chem. Soc. 2004, 126, 412.
Qin, S.; Qin, D.; Ford, W. T.; Resasco, D. E.; Herrera J. E. Macromolecules 2004, 37, 752.
Sabba, Y.; Thomas, E. L. Macromolecules 2004, 37, 4815.
Fernando, K. A. S.; Lin, Y.; Sun, Y.-P. Langmuir 2004, 20, 4777.
Sinani, V. A.; Gheith, M. K.; Yaroslavov, A. A.; Rakhnyanskaya, A. A.; Sun, K.; Mamedov, A. A.; Wicksted, J. P.; Kotov, N. A. J. Am. Chem. Soc. 2005, 127, 3463.
Sreekumar, T. V.; Liu, T.; Kumar, S.; Ericson, L. M.; Hauge, R. H.; Smalley, R. E. Chem. Mater. 2003, 15, 175.
Hu, L.; Hecht, D. S.; Gruner G. Nano Lett. 2004, 4, 2513.
Wu, Z.; Chen, Z.; Du, X.; Logan, J.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J.; Tanner, D.; Hebard, A.; Rinzler, A. Science 2004, 305, 1273.
Meitl, M. A.; Zhou, Y.; Gaur, A.; Jeon, S.; Usrey, M. L.; Strano, M. S.; Rogers, J. A. Nano Lett. 2004, 4, 1643.
Baughman, R. H.; Zhakhidov, A. A.; de Heer, W. A. Science 2002, 297, 787.
Simple calculations show that the individual MWNT with the outer and inner diameter of 25 and 6 nm, respectively, contains more carbon atoms with the factor of about 2.2 than the 25-nm-thick bungle of SWNTs with the diameter of 1.5 nm.
Vossen, D. L. J.; de Dood, M. J. A.; van Dillen, T.; Zijlstra, T.; van der Drift, E.; Polman, A.; van Blaaderen, A. Adv. Mater. 2000, 12, 1434.
Tung, J.; Lin, C. Radiat. Eff. 1980, 80, 261.
Stauffer, G. Introduction to percolation theory; Taylor & Francis: London, UK, 1985.
Pike, G. E.; Seager, C. Phys. Rev. B 1974, 10, 1421.
Yi, Y.; Sastry, A. Phys. Rev. E 2002, 66, 066130.
Kirkpatrick, S. Rev. Mod. Phys. 1973, 45, 574.
WSxM v4.0 Develop 8.1: http://www.nanotec.es/.
The value of the surface density for sample #1 was used as the critical density (M#1 = Mc) since the calculated density of conductive sticks for this sample (N#1 = 1.06 l/μm2) is very close to the calculated critical density (Nc = 0.99 1/μm2).
Kim, B.; Lee, J.; Yu, I. J. Appl. Phys. 2003, 94, 6724.
Kilbride, B. E.; Coleman, J. N.; Fraysee, J.; Fournet, P.; Cadek, M.; Drury, A.; Hutzler, S.; Roth, S.; Blau, W. J. J. Appl. Phys. 2002, 92, 4024.