[en] The partial coalescence of a droplet onto a planar liquid-liquid interface is investigated experimentally by tuning the viscosities of both liquids. The problem mainly depends on four dimensionless parameters: The Bond number (gravity vs surface tension), the Ohnesorge numbers (viscosity in both fluids vs surface tension), and the density relative difference. The ratio between the daughter droplet size and the mother droplet size is investigated as a function of these dimensionless numbers. Global quantities such as the available surface energy of the droplet have been measured during the coalescence. The capillary waves propagation and damping are studied in detail. The relation between these waves and the partial coalescence is discussed. Additional viscous mechanisms are proposed in order to explain the asymmetric role played by both viscosities.
Disciplines :
Physics
Author, co-author :
Gilet, Tristan ; Université de Liège - ULiège > Département de physique > Physique statistique
Mulleners, Karen
Lecomte, Jean-Paul
Vandewalle, Nicolas ; Université de Liège - ULiège > Département de physique > Physique statistique
Dorbolo, Stéphane ; Université de Liège - ULiège > Département de physique > Physique statistique
Language :
English
Title :
Critical parameters for the partial coalescence of a droplet
Alternative titles :
[fr] Paramètres critiques de la coalescence partielle d'une gouttelette
Publication date :
March 2007
Journal title :
Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics
ISSN :
1539-3755
eISSN :
1550-2376
Publisher :
American Physical Soc, College Pk, United States - Maryland
A. F. Jones and S. D. R. Wilson, J. Fluid Mech. JFLSA7 0022-1120 87, 263 (1978).
J. Eggers, J. R. Lister, and H. A. Stone, J. Fluid Mech. JFLSA7 0022-1120 10.1017/S002211209900662X 401, 293 (1999).
A. Menchaca-Rocha, A. Martínez-Dávalos, R. Núñez, S. Popinet, and S. Zaleski, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.63.046309 63, 046309 (2001).
C. Hanson and A. H. Brown, in Solvent Extraction Chemistry (North-Holland Publishing Company, Amsterdam, 1967), p. 522.
A. V. Anilkumar, C. P. Lee, and T. G. Wang, Phys. Fluids A PFADEB 0899-8213 10.1063/1.858199 3, 2587 (1991).
P. N. Shankar and M. Kumar, Phys. Fluids PHFLE6 1070-6631 10.1063/1.868597 7, 737 (1995).
R. W. Cresswell and B. R. Morton, Phys. Fluids PHFLE6 1070-6631 10.1063/1.868524 7, 1363 (1995).
L. Landau and E. Lifchitz, Fluid Mechanics, Course on Theoretical Physics, Vol. 6 (Addison-Wesley, Redwood City, CA, 1959).
P. Yue, C. Zhou, and J. J. Feng, Phys. Fluids PHFLE6 1070-6631 10.1063/1.2364144 18, 102102 (2006).
G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants, and Some Mathematical Functions, 14th ed. (Longman, New York, 1973).
D. Lide, Handbook of Chemistry and Physics, 83rd ed. (CRC Press, Boca Raton, 2005).
I. B. Ivanov and T. T. Traykov, Int. J. Multiphase Flow IJMFBP 0301-9322 2, 397 (1976).
J. S. Eow and M. Ghadiri, Colloids Surf., A CPEAEH 0927-7757 215, 101 (2003).
Y. Couder, E. Fort, C. H. Gautier, and A. Boudaoud, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94.177801 94, 177801 (2005).