[en] A model coupling an electron energy degradation code with a detailed synthetic spectrum of the H-2 Lyman and Werner band system is used to calculate the emerging auroral ultraviolet spectra from Jupiter's atmosphere excited by electrons with different initial energy distributions. The atmospheric model is adapted from the vertical P-T profile measured by the Galileo probe and midlatitude model hydrocarbon photochemistry. Each altitude layer, with its own gas temperature, contributes to the emergent ultraviolet spectrum and the absorbers are vertically distributed within the source region of the auroral emissions. Examples of the calculated spectra are shown to validate the synthetic spectrum and to illustrate the importance of the electron energy distribution and the vertical structure. The model is then applied to the analysis of seven HST/GHRS spectra of the 1200-1700 Angstrom region obtained with 5-Angstrom resolution at various locations in the north and south Jovian aurora. These spectra have different color ratios which characterize the energy of the precipitated electrons, although they do not have a high enough spectral resolution to permit a determination of the H-2 temperature. We find that the characteristic energy of the assumed initial Maxwellian distribution ranges between 17 and 40 keV. A clear signature of acetylene absorption is observed near 1520, 1480, and 1440 Angstrom where the C2H2 cross section shows strong absorption peaks. The acetylene column abundance overlying the emission peak varies from 0.02 to 0.2 of the methane column. A better fit is obtained for some spectra when ethane absorption is added. The C2H6 column abundance varies from 0 to 0.5 of the methane column. These changes relative to methane are presumably the result of perturbations by heat released by the fast electron thermalization and/or perturbations to the hydrocarbon chemistry resulting from the production of H atoms by the aurora, A spectrum of the Io flux tube footprint and its trailing tail shows an ultraviolet color and hydrocarbon absorption quite similar to some of the main oval spectra, This observation suggests that the electrons of the Io flux tube are energized to a few tens of keV, similar to the electron precipitated in the main ovals and polar caps. Echelle spectra between 1216 and 1220 Angstrom at 0.07 Angstrom resolution are also compared with the model fitting best the mid-resolution spectra. It is found that the effective H-2 rovibrational temperature associated with the echelle spectra are significantly higher than predicted by the mid-latitude model. A large vertical temperature gradient just above the methane homopause due to large heating by auroral precipitation is a plausible explanation for this difference. (C) 2000 Academic Press.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Dols, V.
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Clarke, J. T.
Gustin, Jacques ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Language :
English
Title :
Diagnostics of the jovian aurora deduced from ultraviolet spectroscopy: Model and HST/GHRS observations
Publication date :
2000
Journal title :
Icarus
ISSN :
0019-1035
eISSN :
1090-2643
Publisher :
Academic Press, San Diego, United States - California
Abgrall H., Roueff E., Launay F., Roncin J. Y., Subtil J. L. Table of the Lyman band system of molecular hydrogen. Astron. Astrophys. Suppl. 101:1993a;273-321.
Abgrall H., Roueff E., Launay F., Roncin J. Y., Subtil J. L. Table of the Werner band system of molecular hydrogen. Astron. Astrophys. Suppl. 101:1993b;323-362.
Abgrall H., Roueff E., Liu X., Shemansky D. E. The emission continuum of electron excited molecular hydrogen. Astrophys. J. 481:1997;557-566.
Ajello J. M., Shemansky D., Kwok T. L., Yung Y. L. Studies of extreme-ultraviolet emission from Rydberg series of H2 by electron impact. Phys. Rev. A. 29:1984;636-653.
Ajello J. M. Simultaneous extreme ultraviolet and far ultraviolet observations of Jupiter aurora from the Galileo Orbiter. J. Geophys. Res. 103:1998;20,125.
Broadfoot, A. L., and 16 colleagues 1979. Extreme ultraviolet observations from Voyager 1 encounter with Jupiter. Science204, 979-982.
Crary F. J. On the generation of an electron beam by Io. J. Geophys. Res. 102:1997;37-49.
Clarke J. T. Hubble Space Telescope far-ultraviolet imaging of Jupiter during the impacts of Comet Shoemaker-Levy 9. Science. 267:1995;1302.
Clarke, J. T., and 20 colleagues 1996. Far-UV imaging of Jupiter's aurora and the Io "footprint" with HST/WFPC 2. Science274, 404-409.
Clarke J. T., Ajello J., Ballester G., Ben Jaffel L., Connerney J., Gérard J.-C., Gladstone R., Pryor W., Tobiska K., Trauger J., Waite H. HST-STIS observations of Jupiter's aurora. Bull. Am. Astron. Soc. 30:1998;1078.
Clarke J. T., Ballester G., Trauger J., Ajello J., Pryor W., Tobiska K., Connerney J., Gladstone G. R., Waite H., Ben Jaffel L., Gérard J.-C. HST imaging of Jupiter's UV aurora during the Galileo Orbiter mission. J. Geophys. Res. 103:1998;217-(20).
Clarke J. T., Ben Jaffel L., Vidal-Madjar A., Gladstone G. R., Waite J. H. Jr., Prangé R., Gérard J. C., Ajello J., James G. Hubble Space Telescope Goddard high-resolution spectrograph H2 rotational spectra of Jupiter's aurora. Astrophys. J. Lett. 430:1994;L73-76.
Connerney J. E. P., Acuna M. H., Ness N. F., Satoh T. New model of Jupiter's magnetic field constrained by the Io flux tube footprint. J. Geophys. Res. 103:1998;11,929-11,939.
Cravens T. E. Vibrationally excited molecular hydrogen in the upper atmosphere of Jupiter. J. Geophys. Res. 92:1987;11,083-11,100.
Drossart P., Maillard J. P., Caldwell J., Rosenqvist J. Line-resolved spectroscopy of the jovian H3+ emission of 3.5 micrometer. Astrophys. J. 402:1993;L25-28.
Dziczek, D, J. M. Ajello, G. K. James, and, D. L. Hansen, A study of the cascade contribution to the H2 Lyman band system from electron impact, Phys. Rev. A, in press.
Garvey R. H., Porter H. S., Green A. E. S. Relativistic yield spectra for H2. J. Appl. Phys. 48:1977;4353-4359.
Gérard J. C., Dols V., Paresce F., Prangé R. Morphology and time variation of the jovian far ultraviolet imaged with the HST. J. Geophys. Res. 98:1993;18,793-18,801.
Gérard J. C., Grodent D., Dols V., Waite J. H. The longitudinal variation of the color ratio of the jovian ultraviolet aurora : A geometric effect? Geophys. Res. Lett. 25:1998;1601-1604.
Gérard J. C., Grodent D., Prangé R., Waite J. H., Gladstone G. R., Dols V., Paresce F., Storrs A., Ben Jaffel L., Franke K. A. A remarkable auroral event on Jupiter observed in ultraviolet with the Hubble Space Telescope. Science. 266:1994;1675-1677.
Gladstone, G. R., and T. F. Skinner1989. Spectral analysis of jovian auroral emissions. In Proceedings of the Workshop on Time-Variable Phenomena in the Jovian SystemM. J. S. Belton, R. A. West, and J. Rahe, Eds, pp. 221-228. NASA SP-494.
Gladstone G. R., Allen M., Yung Y. L. Hydrocarbon photochemistry in the upper atmosphere of Jupiter. Icarus. 119:1996;1-52.
Grodent D., Gladstone G. R., Gérard J. C., Dols V., Waite J. H. Simulation of the morphology of the jovian UV North aurora observed with the Hubble Space Telescope. Icarus. 128:1997;306-321.
Grodent, D, J. H. Waite, and, J. C. Gérard, A self-consistent model of the Jovian auroral thermal structure, J. Geophys. Res, submitted.
Harris W., Clarke J. T., McGrath M. A., Ballester G. E. Analysis of jovian auroral H Ly-α Emission (1981-1991). Icarus. 124:1996;350-365.
Kim Y. H., Caldwell J., Fox J. L. High-resolution ultraviolet spectroscopy of Jupiter's aurora with the Hubble Space Telescope. Astrophys. J. 447:1995;906-914.
Kim Y. H., Fox J. L., Porter H. S. Densities and vibrational distribution of H3+ in the jovian auroral ionosphere. J. Geophys. Res. 97:1992;6093-6101.
Lin C. S. Theoretical analysis of the vibrational structure of the electronic transitions involving a state with double minimum: E, F 1Σ+g of H2. J. Chem. Phys. 60:1974;4660-4664.
Liu W., Dalgarno A. The ultraviolet spectrum of the jovian aurora. Astrophys. J. 467:1996;446-453.
Liu X., Ahmed S. M., Multari R. A., James G. K., Ajello J. M. High-resolution electron impact study of the far ultraviolet emission spectrum of molecular hydrogen. Astrophys. J. Suppl. 101:1995;375-399.
Liu X., Shemansky D. E., Ahmed S. M., James G. K., Ajello J. M. Electron-impact excitation and emission cross sections of the H2 Lyman and Werner systems. J. Geophys. Res. 103:1998;26,739-26,758.
Livengood T. A., Moos H. W. Jupiter's north and south polar aurorae with IUE data. Geophys. Res. Lett. 17:1990;2265-2268.
Morrissey P. F., Feldman P. D., Clarke J. T., Wolfven B. C., Strobel D. F., Durrance S. T., Trauger J. T. Simultaneous spectroscopy and imaging of the jovian aurora with the Hopkins Ultraviolet Telescope and the Hubble Space Telescope. Astrophys. J. 476:1997;918-923.
Mount G., Warden E. S., Moos H. W. Photoabsorption cross sections of methane from 1400 to 1850 Å Astrophys. J. 214:1977;L47-49.
Mount G., Warden E. S., Moos H. W. Photoabsorption cross sections of methane and ethane from 11380 to 1600 Å at T=295 K and T=200 K. Astrophys. J. 224:1978.
Nakayama T., Watanabe K. Absorption and photoionization coefficients of acetylene, propyne and 1-butyne. J. Chem. Phys. 40:1964;558-561.
Perry J. J., Kim Y. H., Fox J. L., Porter H. S. Chemistry of the jovian auroral ionosphere. J. Geophys. Res. 104:1999;16,541-16,566.
Prangé R., Rego D., Pallier L., BenJaffel L., Emerich C., Ajello J., Clarke J. T., Ballester G. Detection of self-absorbed Lyα lines from the jovian aurorae with the Hubble Space Telescope. Astrophys. J. 484:1997;L169-173.
Prangé R., Rego D., Pallier L., Connerney J. E. P., Zarka Ph., Queinnec J. Detailed study of FUV jovian features with the post-COSTAR HST faint object camera. J. Geophys. Res. 103:1998;20,195-20,215.
Seiff A., Kirk D. B., Knight T. C. D., Young R. E., Mihalov J. D., Young L. A., Milos F. S., Schubert G., Blanchard R. C., Atkinson D. Thermal structure of Jupiter's atmosphere near the edge of a 5-μm hot spot in the north equatorial belt. J. Geophys. Res. 103:1998;22,857-22,890.
Shemansky D. E., Ajello J. M., Hall D. T. Electron impact excitation of H2: Rydberg band systems and the benchmark dissociative cross section for H Lyman alpha. Astrophys. J. 296:1985;765-773.
Smith P. L., Ito K., Stark G. High-resolution, VUV (147-201 nm) photoabsorption cross sections for C2H2 at 195 and 295 K. J. Geophys. Res. 96:1991;17,529-17,533.
Stephens, T. L., and A. Dalgarno, Spontaneous radiative dissociation in molecular hydrogen 1972. J. Quant. Spectrosc. Radiat. Trans.12, 569-586.
Trafton L., Gérard J. C., Munhoven G., Waite J. H. Jr. High-resolution spectra of Jupiter's northern auroral ultraviolet emission with the Hubble Space Telescope. Astrophys. J. 421:1994;816-827.
Trafton L. M., Dols V., Gérard J. C., Waite J. H., Gladstone R. G., Munhoven G. HST spectra of the jovian ultraviolet aurora: Search for heavy ion precipitation. Astrophys. J. 507:1998;955-967.
Vasavada A. R., Bouchez A. H., Ingersoll A. P., Little B., Anger C. D. Jupiter's visible aurora and Io footprint. J. Geophys. Res. 104:1999;27133-27142.
Waite, J. H. Jr., T. E. Cravens, J. U. Kozyra, A. F. Nagy, S. K. Atreya, and R. H. Chen. Electron precipitation and related aeronomy of the jovian thermosphere and ionosphere. J. Geophys. Res.88, 6143-6163.
Yung Y. L., Gladstone G. R., Chang K. M., Ajello J. M., Srivastava S. K. H2 fluorescence spectrum from 1200 to 1700 Å by electron impact: Laboratory study and application to jovian aurora. Astrophys. J. 254:1982;L65-69.