Aminopyridines/pharmacokinetics; Animals; Autoradiography/methods; Biological Transport; Chromatography, High Pressure Liquid; Fluorine Radioisotopes/pharmacokinetics; Kinetics; Male; Microdialysis; Piperazines/pharmacokinetics; Radiation-Sensitizing Agents/pharmacokinetics; Raphe Nuclei/radionuclide imaging; Rats; Rats, Sprague-Dawley; Sensitivity and Specificity; Serotonin/metabolism; Tissue Distribution
Abstract :
[en] The aim of this study was to demonstrate the ability of a recently developed beta(+)-range sensitive intracerebral probe (beta-Microprobe) to measure the binding kinetics of [(18)F]MPPF, a well-documented 5-HT(1A) serotoninergic receptor ligand, in the dorsal raphe nucleus (DRN) of the anaesthetised rat. This midbrain nucleus presents a high concentration of 5-HT(1A) receptors known to be implicated in the effects of antidepressants. The difficulty confronting this study lay in the fact that the dimensions of the DRN are smaller than the detection volume of the beta-Microprobe. In the first part of the study, we studied the feasibility of this measurement from a theoretical point of view by autoradiography and a Monte Carlo simulation. We determined the optimal beta-Microprobe location close to the DRN and verified that this configuration allowed accurate determination of [(18)F]MPPF specific binding in the nucleus. In the second part of our study, we measured the in vivo time-concentration curves of [(18)F]MPPF binding in the DRN in comparison with the cerebellum. The specificity of [(18)F]MPPF binding in the DRN was confirmed by its displacement after non-labelled 5-HT(1A)antagonist injection (MPPF or WAY-100635). Moreover, we verified the feasibility of using beta-Microprobe monitoring and simultaneous validation by microdialysis to study the effect of an increase in extracellular serotonin, induced by fenfluramine injection, on [(18)F]MPPF binding in the DRN. Our theoretical simulations, confirmed by our experimental results, demonstrate the ability of this new device to monitor in vivo the binding of [(18)F]MPPF in the DRN of anaesthetised rodents.
Research Center/Unit :
GIGA CRC (Cyclotron Research Center) In vivo Imaging-Aging & Memory - ULiège CERMEP Lyon
Disciplines :
Radiology, nuclear medicine & imaging
Author, co-author :
Zimmer, L.
Pain, F.
Mauger, G.
Plenevaux, Alain ; Université de Liège - ULiège > Centre de recherches du cyclotron
Le Bars, Didier; Centre d'Exploration et de Recherche Médicales par Émission de Positons - CERMEP (Lyon)
Mastrippolito, R.
Pujol, J. F.
Renaud, B.
Laniece, Philippe; Université Paris XI > Institut de Physique Nucléaire
Language :
English
Title :
The potential of the beta-Microprobe, an intracerebral radiosensitive probe, to monitor the [(18)F]MPPF binding in the rat dorsal raphe nucleus.
Publication date :
2002
Journal title :
European Journal of Nuclear Medicine and Molecular Imaging
Kornblum H.I., Araujo D.M., Annala A.J., Tatsukawa K.J., Phelps M.E., Cherry S.R. (2000) In vivo imaging of neuronal activation and plasticity in the rat brain by high resolution positron emission tomography (microPET). Nat Biotechnol 18:655-660.
Cutler P.D., Cherry S.R., Hoffman E.J., Digby W.M., Phelps M.E. (1992) Design features and performance of a PET system for animal research. J Nucl Med 33:595-604.
Hume S.P., Jones T. (1998) Positron emission tomography (PET) methodology for small animals and its application in radiopharmaceutical preclinical investigation. Nucl Med Biol 25:729-732.
Chatziioannou A.F., Cherry S.R., Shao Y., Silverman R.W., Meadors K., Farquhar T.H., Pedarsani M., Phelps M.E. (1999) Performance evaluation of microPET: A high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med 40:1164-1175.
Myers R., Hume S., Bloomfield P., Jones T. (1999) Radio-imaging in small animals. J Psychopharmacol 13:352-357.
Hume S.P., Lammertsma A.A., Myers R., Rajeswaran S., Bloomfield P.M., Ashworth S., Fricker R.A., Torres E.M., Watson I., Jones T. (1996) The potential of high-resolution positron emission tomography to monitor striatal dopaminergic function in rat models of disease. J Neurosci Methods 67:103-112.
Chatziioannou A.F. (2002) Molecular imaging of small animals with dedicated PET tomographs. Eur J Nucl Med 29:98-114.
Pain F., Laniece P., Mastrippolito R., Charon Y., Comar D., Leviel V., Pujol J.F., Valentin L. (2000) Sic, an intracerebral radiosensitive probe for in vivo neuropharmacology investigations in small laboratory animals: Theoretical considerations and physical characteristics. IEEE Trans Nucl Sci 47:25-32.
Zimmer L., Hassoun W., Pain F., Bonnefoi F., Laniece P., Mastrippolito R., Pinot L., Pujol J.F., Leviel V. (2002) SIC an intracerebral Beta+-range sensitive probe for radiopharmacology investigations in small laboratory animals: Binding studies with [11C]raclopride. J Nucl Med 43:227-233.
Zimmer L., Mauger G., Le Bars D., Bonmarchand G., Luxen A., Pujol J.F. (2002) Effect of endogenous serotonin on the binding of the 5-HT1A PET ligand 18F-MPPF in the rat hippocampus: Kinetic Beta measurements combined with microdialysis. J Neurochem 80:278-286.
Lidov H.G., Grzanna R., Molliver M.E. (1980) The serotonin innervation of the cerebral cortex in the rat - An immunohistochemical analysis. Neuroscience 5:207-227.
Palacios J.M., Waeber C., Hoyer D., Mengod G. (1990) Distribution of serotonin receptors. Ann N Y Acad Sci 600:36-52.
Romero L., Artigas F. (1997) Preferential potentiation of the effects of serotonin uptake inhibitors by 5-HT1A receptor antagonists in the dorsal raphe pathway: Role of somatodendritic autoreceptors. J Neurochem 68:2593-2603.
Ginovart N., Hassoun W., Le Bars D., Weissmann D., Leviel V. (2000) In vivo characterization of p-[18F]MPPF, a fluoro analog of WAY-100635 for visualization of 5-HT1A receptors. Synapse 35:192-200.
Plenevaux A., Weissmann D., Aerts J., Lemaire C., Brihaye C., Degueldre C., Le Bars D., Comar D., Pujol J., Luxen A. (2000) Tissue distribution, autoradiography, and metabolism of 4-(2′-methoxyphenyl)-1-[2′-[N-2″-pyridinyl)-p-[ 18F]fluorobenzamido]ethyl]piperazine (p-[18F]MPPF), a new serotonin 5-HT1A antagonist for positron emission tomography: An in vivo study in rats. J Neurochem 75:803-811.
Le Bars D., Bonmarchand G., Alvarez J.M., Lemaire C., Mosdzianowski C. (2001) New automation of [18F]-MPPF using a coincidence synthesizer. J Labelled Cpd Radiopharm 44.
Le Bars D., Lemaire C., Ginovart N., Plenevaux A., Aerts J., Brihaye C., Hassoun W., Leviel V., Mekhsian P., Weissmann D., Pujol J.F., Luxen A., Comar D. (1998) High-yield radiosynthesis and preliminary in vivo evaluation ofp-[18F]MPPF, a fluoro analog of WAY-100635. Nucl Med Biol 25:343-350.
Paxinos G., Watson C. The rat brain in stereotaxic coordinates, Sydney, Australia: Academic Press; 1986.
Di Chiara G., Tanda G., Carboni E. (1996) Estimation of in vivo neurotransmitter release by brain microdialysis: The issue of validity. Behav Pharmacol 7:640-657.
Hughes H.G. (1996) Treating electron transport in MCNP. LA-UR-96-4583, Los Alamos National Laboratory Internal Report.
Levin C.S., Hoffman E.J. (1999) Calculation of positron range and its effect on the fundamental limit of positron emission tomography system. Phys Med Biol 44:781-799.
Kostowski W., Plaznik A., Archer T. (1989) Possible implication of 5-HT1A function for the etiology and treatment of depression. New Trends Exp Clin Psychiatry 5:91-116.
Pazos A., Probst A., Palacios J.M. (1987) Serotonin receptors in the human brain. III. Autoradiographic mapping of serotonin-1 receptors. Neuroscience 21:97-122.
Pazos A., Palacios J.M. (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res 346:205-230.
Verge D., Daval G., Patey A., Gozlan H., El Mestikawy S., Hamon M. (1985) Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT1A subtype. Eur J Pharmacol 113:463-464.
Barnes N.M., Sharp T. (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083-1152.
Stamford J.A., Davidson C., McLaughlin D.P., Hopwood S.E. (2000) Control of dorsal raphe 5-HT function by multiple 5-HT(1) autoreceptors: Parallel purposes or pointless plurality?. Trends Neurosci 23:459-465.
Pineyro G., Blier P. (1999) Autoregulation of serotonin neurons: Role in antidepressant drug action. Pharmacol Rev 51:533-591.
Blier P. (2001) Pharmacology of rapid-onset antidepressant treatment strategies. J Clin Psychiatry 62(SUPPL. 15):12-17.
Passchier J., Van Waarde A. (2001) Visualisation of serotonin-1A (5-HT1A) receptors in the central nervous system. Eur J Nucl Med 28:113-129.
Zhuang Z.P., Kung M.P., Kung H.F. (1994) Synthesis and evaluation of 4-(2′-methoxyphenyl)-1-[2′-[N-(2″-pyridinyl)-p- iodobenzamido] ethyl]piperazine (p-MPPI): A new iodinated 5-HT1A ligand. J Med Chem 37:1406-1407.
Thielen R.J., Fangon N.B., Frazer A. (1996) 4-(2′-Methoxyphenyl)-1-[2′-[N-(2″-pyridinyl)-p- iodobenzamido]ethyl] piperazine and 4-(2′-methoxyphenyl)-1-[2′-[N-(2″-pyridinyl)-p- fluorobenzamido] ethyl]piperazine, two new antagonists at pre- and postsynaptic serotonin-1A receptors. J Pharmacol Exp Ther 277:661-670.
Kung H.F., Stevenson D.A., Zhuang Z.P., Kung M.P., Frederick D., Hurt S.D. (1996) New 5-HT1A receptor antagonist: [3H]p-MPPF. Synapse 23:344-346.
Plenevaux A., Lemaire C., Aerts J., Lacan G., Rubins D., Melega W.P., Brihaye C., Degueldre C., Fuchs S., Salmon E., Maquet P., Laureys S., Damhaut P., Weissmann D., Le Bars D., Pujol J.F., Luxen A. (2000) [18F]p-MPPF: A radiolabelled antagonist for the study of 5-HT1A receptors with PET. Nucl Med Biol 27:467-471.
Raison S., Weissmann D., Rousset C., Pujol J.F., Descarries L. (1995) Changes in steady-state levels of tryptophan hydroxylase protein in adult rat brain after neonatal 6-hydroxydopamine lesion. Neuroscience 67:463-475.
Adell A., Artigas F. (1991) Differential effects of clomipramine given locally or systemically on extracellular 5-hydroxytryptamine in raphe nuclei and frontal cortex. An in vivo brain microdialysis study. Naunyn Schmiedebergs Arch Pharmacol 343:237-244.
Burnet P.W., Eastwood S.L., Lacey K., Harrison P.J. (1995) The distribution of 5-HT1A and 5-HT2A receptor mRNA in human brain. Brain Res 676:157-168.
Passchier J., Van Waarde A., Pieterman R.M., Elsinga P.H., Pruim J., Hendrikse H.N., Willemsen A.T., Vaalburg W. (2000) In vivo delineation of 5-HT1A receptors in human brain with [18F] MPPF. J Nucl Med 41:1830-1835.
Passchier J., Van Waarde A., Pieterman R.M., Elsinga P.H., Pruim J., Hendrikse H.N., Willemsen A.T., Vaalburg W. (2000) Quantitative imaging of 5-HT1A receptor binding in healthy volunteers with [18F]p-MPPF. Nucl Med Biol 27:473-476.
Rowland N.E., Carlton J. (1986) Neurobiology of an anorectic drug: Fenfluramine. Prog Neurobiol 27:13-62.
Bonanno G., Fassio A., Severi P., Ruelle A., Raiteri M. (1994) Fenfluramine releases serotonin from human brain nerve endings by a dual mechanism. J Neurochem 63:1163-1166.
Hume S., Hirani E., Opacka-Juffry J., Myers R., Townsend C., Pike V., Grasby P. (2001) Effect of 5-HT on binding of [11C] WAY 100635 to 5-HT1A receptors in rat brain, assessed using in vivo microdialysis and PET after fenfluramine. Synapse 41:150-159.
Smith J.C., Whitton P.S. (2000) Nitric oxide modulates N-methyl-D-aspartate-evoked serotonin release in the raphe nuclei and frontal cortex of the freely moving rat. Neurosci Lett 291:5-8.
Portas C.M., Bjorvatn B., Fagerland S., Gronli J., Mundal V., Sorensen E., Ursin R. (1998) On-line detection of extracellular levels of serotonin in dorsal raphe nucleus and frontal cortex over the sleep/wake cycle in the freely moving rat. Neuroscience 83:807-814.
Laruelle M. (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: A critical review. J Cereb Blood Flow Metab 20:423-451.
Laruelle M., Huang Y. (2001) Vulnerability of positron emission tomography radiotracers to endogenous competition. New insights. Q J Nucl Med 45:124-138.
Hirani E., Opacka-Juffry J., Gunn R., Khan I., Sharp T., Hume S. (2000) Pindolol occupancy of 5-HT1A receptors measured in vivo using small animal positron emission tomography with carbon-11 labeled WAY 100635. Synapse 36:330-341.