[en] A three-dimensional Earth system model of intermediate complexity including a dynamic ice sheet component has been used to investigate the long-term evolution of the Greenland ice sheet and its effects on the Atlantic meridional overturning circulation (AMOC) in response to a range of stabilized anthropogenic forcings. Our results suggest that the Greenland ice sheet volume should experience a significant decrease in the future. For a radiative forcing exceeding 7.5 W m(-2), the modeled ice sheet melts away within 3000 years. A number of feedbacks operate during this deglaciation, implying a strong nonlinear relationship between the radiative forcing and the melting rate. Only in the most extreme scenarios considered, the freshwater flux from Greenland into the surrounding oceans ( of ca. 0.1 Sv during a few centuries) induces a noticeable weakening of the AMOC in the model.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Driesschaert, E.
Fichefet, T.
Goosse, H.
Huybrechts, P.
Janssens, I.
Mouchet, Anne ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Munhoven, Guy ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Brovkin, V.
Weber, S. L.
Language :
English
Title :
Modeling the influence of Greenland ice sheet melting on the Atlantic meridional overturning circulation during the next millennia
Publication date :
2007
Journal title :
Geophysical Research Letters
ISSN :
0094-8276
eISSN :
1944-8007
Publisher :
American Geophysical Union, Washington, United States - District of Columbia
Beckmann, A., and H. Goosse (2003), A parameterization of ice shelf-ocean interaction for climate models, Ocean Modell. 5, pp. 157-170, Hooke Inst. Oxford Univ., Oxford, U. K.
Brovkin, V., J. Bendtsen, M. Claussen, A. Ganopolski, C. Kubatzki, V. Petoukhov, and A. Andreev (2002), Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model, Global Biogeochem. Cycles, 16(4), 1139, doi:10.1029/2001GB001662.
Dethloff, K., W. Dorn, A. Rinke, K. Fraedrich, M. Junge, E. Roeckner, V. Gayler, U. Cubash, and J. H. Christensen (2004), The impact of Greenland's deglaciation on the Arctic circulation, Geophys. Res. Lett., 31, L19201, doi:10.1029/2004GL020714.
Driesschaert, E. (2005), Climate change over the next millennia using LOVECLIM, a new Earth system model including the polar ice sheets, Ph.D. thesis, 214 pp., Univ. Catholique de Louvain, Louvain-la-Neuve, Belgium, http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/ BelnUcetd-10172005-185914/.
Fichefet, T., C. Poncin, H. Goosse, P. Huybrechts, I. Janssens, and H. Le Treut (2003), Implications of changes in freshwater flux from the Greenland ice sheet for the climate of the 21st century, Geophys. Res. Lett., 30(17), 1911, doi:10.1029/2003GL017826.
Goosse, H., and T. Fichefet (1999), Importance of ice-ocean interactions for the global ocean circulation: A model study, J. Geophys. Res., 104, 23,337-23,355.
Gregory, J. M., P. Huybrechts, and S. C. B. Raper (2004), Threatened loss of the Greenland ice sheet, Nature, 428, 616.
Gregory, J. M., et al. (2005), A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration, Geophys. Res. Lett., 32, L12703, doi:10.1029/2005GL023209.
Greve, R. (2000), On the response of the Greenland ice sheet to greenhouse climate change, Clim. Change, 46, 289-303.
Holland, M. M., and C. M. Bitz (2003), Polar amplification of climate change in coupled models, Clim. Dyn., 21, 221-232, doi:10.1007/ s00382-003-0332-6.
Huybrechts, P. (2002), Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles, Quat. Sci. Rev., 21, 203-231.
Huybrechts, P., and J. de Wolde (1999), The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming, J. Clim., 12, 2169-2188.
Huybrechts, P., I. Janssens, C. Poncin, and T. Fichefet (2002), The response f the Greenland ice sheet to climate changes in the 21st century by interactive coupling of an AOGCM with a thermomechanical ice sheet model, Ann. Glaciol., 35, 409-415.
Intergovernmental Panel on Climate Change (IPCC) (2001), Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton et al., 881 pp., Cambridge Univ. Press, Cambridge, U. K.
Jungclaus, J. H., H. Haak, M. Esch, E. Roeckner, and J. Marotzke (2006), Will Greenland melting halt the thermohaline circulation?, Geophys. Res. Lett., 33, L17708, doi:10.1029/2006GL026815.
Loutre, M. (1995), Greenland ice sheet over the next 5000 years, Geophys. Res. Lett., 22, 783-786.
Lunt, D. J., N de Noblet-Ducoudré, and S. Charbit (2004), Effects of a melted Greenland ice sheet on climate, vegetation, and the cryosphere, Clim. Dyn., 23, 679-694, doi:10.1007 /s00382-004-0463-4.
Mouchet, A., and L. M. François (1996), Sensitivity of a global oceanic carbon cycle model to the circulation and to the fate of organic matter: Preliminary results, Phys. Chem. Earth, 21, 511-516.
Opsteegh, J. D., R. J. Haarsma, F. M. Selten, and A. Kattenberg (1998), ECBELT: A dynamic alternative to mixed boundary conditions in ocean models, Tellus, Ser. A, 50, 348-367.
Rahmstorf, S., et al. (2005), Thermohaline circulation hysteresis: A model intercomparison, Geophys. Res. Lett., 32, L23605, doi:10.1029/2005GL023655.
Ridley, J., P. Huybrechts, J. Gregory, and J. Lowe (2005), Future changes in the Greenland ice sheet: A 3000 year simulation with a high resolution ice sheet model interactively coupled to an AOGCM, J. Clim., 18, 3409-3427.
Rignot, E., and P. Kanagaratnam (2006), Changes in the velocity structure of the Greenland ice sheet, Science, 311, 986-990.
Stouffer, R. J., et al. (2006), Investigating the causes of the response of the thermohaline circulation to past and future climate changes, J. Clim., 19, 1365-1387.
Swingedouw, D., P. Braconnot, and O. Marti (2006), Sensitivity of the Atlantic meridional overturning circulation to the melting from northern glaciers in climate change experiments, Geophys. Res. Lett., 33, L07711, doi:10.1029/2006GL025765.
Toniazzo, T., J. M. Gregory, and P. Huybrechts (2004), Climatic impact of a Greenland deglaciation and its possible irreversibility, J. Clim., 17, 21-33.
Winguth, A., U. Mikolajewicz, M. Gröger, E. Maier-Raimer, G. Schurgers, and M. Vizcaino (2005), Centennial-scale interactions between the carbon cycle and anthropogenic climate change using a dynamic Earth system model, Geophys. Res. Lett., 32, L23714, doi:10.1029/ 2005GL023681.