[en] Proneural proteins play a central role in vertebrate neurogenesis, but little is known of the genes that they regulate and of the factors that interact with proneural proteins to activate a neurogenic program. Here, we demonstrate that the proneural protein Mash1 and the POU proteins Brn1 and Brn2 interact on the promoter of the Notch ligand Delta1 and synergistically activate Delta1 transcription, a key step in neurogenesis. Overexpression experiments in vivo indicate that Brn2, like Mash1, regulates additional aspects of neurogenesis, including the division of progenitors and the differentiation and migration of neurons. We identify by in silico screening a number of additional candidate target genes, which are recognized by Mash1 and Brn proteins through a DNA-binding motif similar to that found in the Delta1 gene and present a broad range of activities. We thus propose that Mash1 synergizes with Brn factors to regulate multiple steps of neurogenesis.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Castro, Diogo S
Skowronska-Krawczyk, Dorota
Armant, Olivier
Donaldson, Ian J
Parras, Carlos
Hunt, Charles
Critchley, James A
Nguyen, Laurent ; Université de Liège - ULiège > Département des sciences cliniques > Neurologie
Gossler, Achim
Gottgens, Berthold
Matter, Jean-Marc
Guillemot, Francois
Language :
English
Title :
Proneural bHLH and Brn proteins coregulate a neurogenic program through cooperative binding to a conserved DNA motif.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Alvarez-Bolado G., Rosenfeld M.G., and Swanson L.W. Model of forebrain regionalization based on spatiotemporal patterns of POU-III homeobox gene expression, birthdates, and morphological features. J. Comp. Neurol. 355 (1995) 237-295
Artavanis-Tsakonas S., Rand M.D., and Lake R.J. Notch signaling: cell fate control and signal integration in development. Science 284 (1999) 770-776
Beckers J., Caron A., Hrabe de Angelis M., Hans S., Campos-Ortega J.A., and Gossler A. Distinct regulatory elements direct delta1 expression in the nervous system and paraxial mesoderm of transgenic mice. Mech. Dev. 95 (2000) 23-34
Berkes C.A., Bergstrom D.A., Penn B.H., Seaver K.J., Knoepfler P.S., and Tapscott S.J. Pbx marks genes for activation by MyoD indicating a role for a homeodomain protein in establishing myogenic potential. Mol. Cell 14 (2004) 465-477
Bertrand N., Castro D.S., and Guillemot F. Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3 (2002) 517-530
Bylund M., Andersson E., Novitch B.G., and Muhr J. Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat. Neurosci. 6 (2003) 1162-1168
Casarosa S., Fode C., and Guillemot F. Mash1 regulates neurogenesis in the ventral telencephalon. Development 126 (1999) 525-534
Donaldson I.J., Chapman M., and Gottgens B. TFBScluster: a resource for the characterization of transcriptional regulatory networks. Bioinformatics 21 (2005) 3058-3059
Edlund T., and Jessell T.M. Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system. Cell 96 (1999) 211-224
Farah M.H., Olson J.M., Sucic H.B., Hume R.I., Tapscott S.J., and Turner D.L. Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development 127 (2000) 693-702
Fode C., Ma Q., Casarosa S., Ang S.L., Anderson D.J., and Guillemot F. A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. Genes Dev. 14 (2000) 67-80
Ge W., He F., Kim K.J., Blanchi B., Coskun V., Nguyen L., Wu X., Zhao J., Heng J.I., Martinowich K., et al. Coupling of cell migration with neurogenesis by proneural bHLH factors. Proc. Natl. Acad. Sci. USA 103 (2006) 1319-1324
Gierl M.S., Karoulias N., Wende H., Strehle M., and Birchmeier C. The zinc-finger factor Insm1 (IA-1) is essential for the development of pancreatic β cells and intestinal endocrine cells. Genes Dev. 20 (2006) 2465-2478
Guillemot F., Lo L.C., Johnson J.E., Auerbach A., Anderson D.J., and Joyner A.L. Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75 (1993) 463-476
Hamburger V., and Hamilton H.L. A series of normal stages in the development of the chick embryo. J. Morphol. 88 (1951) 49-92
Hand R., Bortone D., Mattar P., Nguyen L., Heng I.-T.K., Guerrier S., Boutt E., Peters E., Barnes A.P., Parras C., et al. Phosphorylation of Neurogenin2 specifies the migration properties and the dendritic morphology of pyramidal neurons in the neocortex. Neuron 48 (2005) 45-62
Hu Y., Wang T., Stormo G.D., and Gordon J.I. RNA interference of achaete-scute homolog 1 in mouse prostate neuroendocrine cells reveals its gene targets and DNA binding sites. Proc. Natl. Acad. Sci. USA 101 (2004) 5559-5564
Kageyama R., and Ohtsuka T. The Notch-Hes pathway in mammalian neural development. Cell Res. 9 (1999) 179-188
Kondoh H., Uchikawa M., and Kamachi Y. Interplay of Pax6 and SOX2 in lens development as a paradigm of genetic switch mechanisms for cell differentiation. Int. J. Dev. Biol. 48 (2004) 819-827
Koyano-Nakagawa N., Wettstein D., and Kintner C. Activation of Xenopus genes required for lateral inhibition and neuronal differentiation during primary neurogenesis. Mol. Cell. Neurosci. 14 (1999) 327-339
Lee S.K., and Pfaff S.L. Synchronization of neurogenesis and motor neuron specification by direct coupling of bHLH and homeodomain transcription factors. Neuron 38 (2003) 731-745
Lo L., Dormand E., Greenwood A., and Anderson D.J. Comparison of the generic neuronal differentiation and neuron subtype specification functions of mammalian achaete-scute and atonal homologs in cultured neural progenitor cells. Development 129 (2002) 1553-1567
Marin O., and Rubenstein J.L. Cell migration in the forebrain. Annu. Rev. Neurosci. 26 (2003) 441-483
Massari M.E., and Murre C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell. Biol. 20 (2000) 429-440
McEvilly R.J., de Diaz M.O., Schonemann M.D., Hooshmand F., and Rosenfeld M.G. Transcriptional regulation of cortical neuron migration by POU domain factors. Science 295 (2002) 1528-1532
Mellitzer G., Bonne S., Luco R.F., Van De Casteele M., Lenne-Samuel N., Collombat P., Mansouri A., Lee J., Lan M., Pipeleers D., et al. IA1 is NGN3-dependent and essential for differentiation of the endocrine pancreas. EMBO J. 25 (2006) 1344-1352
Miyagi S., Nishimoto M., Saito T., Ninomiya M., Sawamoto K., Okano H., Muramatsu M., Oguro H., Iwama A., and Okuda A. The Sox2 regulatory region 2 functions as a neural stem cell specific enhancer in the telencephalon. J. Biol. Chem. 281 (2006) 13374-13381
Mizuhara E., Nakatani T., Minaki Y., Sakamoto Y., Ono Y., and Takai Y. MAGI1 recruits Dll1 to cadherin-based adherens junctions and stabilizes it on the cell surface. J. Biol. Chem. 280 (2005) 26499-26507
Nakada Y., Hunsaker T.L., Henke R.M., and Johnson J.E. Distinct domains within Mash1 and Math1 are required for function in neuronal differentiation versus neuronal cell-type specification. Development 131 (2004) 1319-1330
Nakayama K.I., and Nakayama K. Regulation of the cell cycle by SCF-type ubiquitin ligases. Semin. Cell Dev. Biol. 16 (2005) 323-333
Nilsson I., and Hoffmann I. Cell cycle regulation by the Cdc25 phosphatase family. Prog. Cell Cycle Res. 4 (2000) 107-114
Nishimoto M., Miyagi S., Katayanagi T., Tomioka M., Muramatsu M., and Okuda A. The embryonic Octamer factor 3/4 displays distinct DNA binding specificity from those of other Octamer factors. Biochem. Biophys. Res. Commun. 302 (2003) 581-586
Okamoto K., Okazawa H., Okuda A., Sakai M., Muramatsu M., and Hamada H. A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell 60 (1990) 461-472
Pomerantz J.L., and Sharp P.A. Homeodomain determinants of major groove recognition. Biochemistry 33 (1994) 10851-10858
Powell L.M., Zur Lage P.I., Prentice D.R., Senthinathan B., and Jarman A.P. The proneural proteins Atonal and Scute regulate neural target genes through different E-box binding sites. Mol. Cell. Biol. 24 (2004) 9517-9526
Quan X.J., Denayer T., Yan J., Jafar-Nejad H., Philippi A., Lichtarge O., Vleminckx K., and Hassan B.A. Evolution of neural precursor selection: functional divergence of proneural proteins. Development 131 (2004) 1679-1689
Ramain P., Khechumian R., Khechumian K., Arbogast N., Ackermann C., and Heitzler P. Interactions between chip and the achaete/scute-daughterless heterodimers are required for pannier-driven proneural patterning. Mol. Cell 6 (2000) 781-790
Scardigli R., Schuurmans C., Gradwohl G., and Guillemot F. Crossregulation between Neurogenin2 and pathways specifying neuronal identity in the spinal cord. Neuron 31 (2001) 203-217
Skowronska-Krawczyk D., Ballivet M., Dynlacht B.D., and Matter J.M. Highly specific interactions between bHLH transcription factors and chromatin during retina development. Development 131 (2004) 4447-4454
Sugitani Y., Nakai S., Minowa O., Nishi M., Jishage K., Kawano H., Mori K., Ogawa M., and Noda T. Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons. Genes Dev. 16 (2002) 1760-1765
Tanaka S., Kamachi Y., Tanouchi A., Hamada H., Jing N., and Kondoh H. Interplay of SOX and POU factors in regulation of the Nestin gene in neural primordial cells. Mol. Cell. Biol. 24 (2004) 8834-8846
Tapscott S.J. The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development 132 (2005) 2685-2695
Tetzlaff M.T., Yu W., Li M., Zhang P., Finegold M., Mahon K., Harper J.W., Schwartz R.J., and Elledge S.J. Defective cardiovascular development and elevated cyclin E and Notch proteins in mice lacking the Fbw7 F-box protein. Proc. Natl. Acad. Sci. USA 101 (2004) 3338-3345
Weimer J.M., and Anton E.S. Doubling up on microtubule stabilizers: synergistic functions of doublecortin-like kinase and doublecortin in the developing cerebral cortex. Neuron 49 (2006) 3-4
Westerman B.A., Murre C., and Oudejans C.B. The cellular Pax-Hox-helix connection. Biochim. Biophys. Acta 1629 (2003) 1-7
Xie H., Ye M., Feng R., and Graf T. Stepwise reprogramming of B cells into macrophages. Cell 117 (2004) 663-676
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.