[en] New copolymers of E-caprolactone (CL) and gamma-bromo-epsilon-caprolactone quaternized by pyridine (Py + CL) were investigated as non-viral vectors for gene delivery. Copolymers with two molar compositions (50 Py + CL/50 CL and 80 Py + CL/20 CL), each with a diblock or a random structure, were used to prepare nanoparticulate complexes with DNA. Average size and surface charge of the complexes and extent of the complexation were measured. The DNA condensation by the copolymers was analysed by a gel retardation assay. Cytotoxicity and transfection efficiency of the copolymers were also evaluated in HeLa cells and compared with polyethylenimme 50 kDa. The size of the polyplexes was approximately 200 nm. The zeta potential first increased with the copolymer/DNA charge ratio and became positive for charge ratios in the 2-4 range depending on the type of copolymer. DNA was completely condensed within the nanoparticles and the degree of interaction was very high. Cytotoxicity and transfection efficiency were found to be comparable to polyethylenimine 50 kDa. The experimental results suggest that the novel copolymers can be used as novel gene delivery vectors.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Clamme J.P., Bernacchi S., Vuilleumier C., Duportail G., and Mély Y. Gene transfer by cationic surfactants is essentially limited by the trapping of the surfactant/DNA complexes onto the cell membrane: a fluorescence investigation. Biochim. Biophys. Acta 1467 (2000) 347-361
Luten J., van Steenis J.H., van Someren R., Kemmink J., Schuurmans-Nieuwenbroeck N.M.E., Koning G.A., Crommelin D.J.A., van Nostrum C.F., and Hennink W.E. Water-soluble biodegradable cationic polyphosphazenes for gene delivery. J. Control. Release 89 (2003) 483-497
Kawabata K., Takakura Y., and Hashida M. The fate of plasmid DNA after intravenous injection in mice: involvement of scavenger receptors in its hepatic uptake. Pharm. Res. 12 (1995) 825-830
Kabanov A.V., Lemieux P., Vinogradov S., and Alakhov V. Pluronic® block copolymers: novel functional molecules for gene therapy. Adv. Drug Deliv. Rev. 54 (2002) 223-233
Choi Y.H., Liu F., Kim J.-S., Choi Y.K., Park J.S., and Kim S.W. Polyethylene glycol-grafted poly-l-lysine as polymeric gene carrier. J. Control. Release 54 (1998) 39-48
Jeong J.H., and Park T.G. Poly(l-lysine)-g-poly(d,l-lactic-co-glycolic acid) micelles for low cytotoxic biodegradable gene delivery carriers. J. Control. Release 82 (2002) 159-166
Itaka K., Yamauchi K., Harada A., Nakamura K., Kawaguchi H., and Kataoka K. Polyion complex micelles from plasmid DNA and poly(ethylene glycol)-poly(l-lysine) block copolymer as serum-tolerable polyplex system: physicochemical properties of micelles relevant to gene transfection efficiency. Biomaterials 24 (2003) 4495-4506
Kircheis R., Wightman L., and Wagner E. Design and gene delivery activity of modified polyethylenimines. Adv. Drug Deliv. Rev. 53 (2001) 341-358
Lee H., Jeong J.H., and Park T.G. A new gene delivery formulation of polyethylenimine/DNA complexes coated with PEG conjugated fusogenic peptide. J. Control. Release 76 (2001) 183-192
Tang G.P., Zeng J.M., Gao S.J., Ma Y.X., Shi L., Li Y., Too H.-P., and Wang S. Polyethylene glycol modified polyethylenimine for improved CNS gene transfer: effects of PEGylation extent. Biomaterials 24 (2003) 2351-2362
Kunath K., von Harpe A., Fischer D., Petersen H., Bickel U., Voigt K., and Kissel T. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J. Control. Release 89 (2003) 113-125
Kunath K., von Harpe A., Fischer D., and Kissel T. Galactose-PEI-DNA complexes for targeted gene delivery: degree of substitution affects complex size and transfection efficiency. J. Control. Release 88 (2003) 159-172
Shah D.S., Sakthivel T., Toth I., Florence A.T., and Wilderspin A.F. DNA transfection and transfected cell viability using amphipathic asymmetric dendrimers. Int. J. Pharm. 208 (2000) 41-48
Luo D., Haverstick K., Belcheva N., Han E., and Saltzman W.M. Poly(ethylene glycol)-conjugated PAMAM dendrimer for biocompatible high-efficiency DNA delivery. Macromolecules 35 (2002) 3456-3462
Choi J.S., Nam K., Park J.-Y., Kim J.-B., Lee J.-K., and Park J.-S. Enhanced transfection efficiency of PAMAM dendrimer by surface modification with l-arginine. J. Control. Release 99 (2004) 445-456
Borchard G. Chitosans for gene delivery. Adv. Drug Deliv. Rev. 52 (2001) 145-150
Kim T.H., Ihm J.E., Choi Y.J., Nah J.W., and Cho C.S. Efficient gene delivery by urocanic acid-modified chitosan. J. Control. Release 93 (2003) 389-402
Mansouri S., Lavigne P., Corsi K., Benderdour M., Beaumont E., and Fernandes J.C. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur. J. Pharm. Biopharm. 57 (2004) 1-8
Kim T.H., Park I.K., Nah J.W., Choi Y.J., and Cho C.S. Galactosylated chitosan/DNA nanoparticles prepared using water-soluble chitosan as a gene carrier. Biomaterials 25 (2004) 3783-3792
van de Wetering P., Cherng J.-Y., Talsma H., Crommelin D.J.A., and Hennink W.E. 2-(dimethylamino)ethyl methacrylate based (co)polymers as gene transfer agents. J. Control. Release 53 (1998) 145-153
Dekie L., Toncheva V., Dubruel P., Schacht E.H., Barrett L., and Seymour L.W. Poly- l-glutamic acid derivates as vectors for gene therapy. J. Control. Release 65 (2000) 187-202
Detrembleur C., Mazza M., Lou X., Halleux O., Lecomte Ph., Mecerreyes D., Hedrick J.L., and Jérôme R. New functional aliphatic polyesters by chemical modification of copolymers of ε-caprolactone with γ-(2-bromo-2-methylpropionate)-ε-caprolactone, γ-bromo-ε-caprolactone and a mixture of β and γ-ène-ε-caprolactone. Macromolecules 33 (2000) 7751-7760
Detrembleur C., Mazza M., Halleux O., Lecomte Ph., Mecerreyes D., Hedrick J.L., and Jérôme R. Ring-opening polymerization of γ-bromo-ε-caprolactone: a novel route to functionalized aliphatic polyesters. Macromolecules 33 (2000) 14-18
Soppimath S., Aminabhavi M., Kulkarni R., and Rudzinski E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 70 (2001) 1-20
Hans M.L., and Lowman A.M. Biodegradable nanoparticles for drug delivery and targeting. Curr. Opin. Solid State Mater. Sci. 6 (2002) 319-327
Perez C., Sanchez A., Putnam D., Ting D., Langer R., and Alonso M.J. Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. J. Control. Release 75 (2001) 211-224
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65 (1983) 55-63
Jeong J.H., Song S.H., Lim D.W., Lee H., and Park T.G. DNA transfection using linear poly(ethylenimine) prepared by controlled acid hydrolysis of poly(2-ethyl-2-oxazoline). J. Control. Release 73 (2001) 391-399
Fischer D., Bieber T., Li Y., Elsasser H.P., and Kissel T. A novel non-viral vector for DNA delivery on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res. 16 (1999) 1273-1279
Boussif O., Lezoualch F., Zanta M.A., Mergny M.D., Scherman D., Demeneix B., and Behr J.-P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. U. S. A. 92 (1995) 7297-7301
Davda J., and Labhasetwar V. Characterization of nanoparticle uptake by endothelial cells. Int. J. Pharm. 233 (2002) 51-59
Hedley M.L., Curley J., and Urban R. Microspheres containing plasmid-encoded antigens elicit cytotoxic T-cell responses. Nat. Med. 4 (1998) 365-368
Liu G., Molas M., Grossmann G.A., Pasumarthy M., Perales J.C., Cooper M.J., and Hanson R.W. Biological properties of poly-l-lysine-DNA complexes generated by cooperative binding of the polycation. J. Biol. Chem. 276 (2001) 34379-34387
Guy J., Drabek D., and Antoniou M. Delivery of DNA into mammalian cells by receptor-mediated endocytosis and gene therapy. Mol. Biotechnol. 3 (1995) 237-248
Mahato R.I., Takakura Y., and Hashida M. Nonviral vectors for in-vivo gene delivery-physicochemical and pharmacokinetic considerations. Crit. Rev. Ther. Drug Carr. Syst. 14 (1997) 133-172
Nomura T., Nakjima S., Kawabata K., Yamashita F., Takakura Y., and Hashita M. Intratumoral pharmacokinetics and in-vivo gene-expression of naked plasmid DNA and its cationic liposome complexes after direct gene-transfer. Cancer Res. 57 (1997) 2681-2686
Kim Y.H., Park J.H., Lee M., Kim Y.-H., Park T.G., and Kim S.W. Polyethylenimine with acid-labile linkages as a biodegradable gene carrier. J. Control. Release 103 (2005) 209-219
Merdan T., Kopecek J., and Kissel T. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv. Drug Deliv. Rev. 54 (2002) 715-758
Kamiya H., Tsuchiya H., Yamazaki J., and Harashima H. Intracellular trafficking and transgene expression of viral and non-viral gene vectors. Adv. Drug Deliv. Rev. 52 (2001) 153-164
Fisher D., Li Y., Ahlemeyer B., Krieglstein J., and Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24 (2003) 1121-1131
Cherng J.Y., van de Wetering P., Talsma H., Crommelin D.J.A., and Hennink W.E. Effect of size and serum proteins on transfection efficiency of poly((2-dimethylamino)ethyl methacrylate)-plasmide nanoparticles. Pharm. Res. 13 (1996) 1038-1042
Lee M., and Kim S.W. Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm. Res. 22 (2005) 1-10