[en] A promising avenue toward the development of more selective anticancer drugs consists in the targeted delivery of bioactive molecules to the tumor environment by means of binding molecules specific to tumor-associated markers. We have used a chemical proteomics approach based on the ex vivo perfusion and biotinylation of accessible structures within surgically resected human kidneys with tumor to gain information about accessible and abundant antigens that are overexpressed in human cancer. This procedure led to the selective labeling with biotin of vascular structures. Biotinylated proteins were purified on streptavidin resin and identified using mass spectrometric methodologies, revealing 637 proteins, 184 of which were only found in tumor specimens and 223 of which were only found in portions of normal kidneys. Immunohistochemical and PCR analysis confirmed that several of the putative cancer antigens identified in this study are indeed preferentially expressed in tumors. In conclusion, we have developed a methodology that allows the identification of accessible biomarkers in human tissues. The tumor-associated antigens identified in this study may be suitable targets for antibody-based anticancer therapies. The experimental approach described here should be applicable to other surgical specimens and to other pathologies as well as to the study of basic physiological and immunological processes.
Huang, X., Molema, G., King, S., Watkins, L., Edgington, T. S., and Thorpe, P. E. (1997) Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science 275, 547-550
Wu, A. M., and Senter, P. D. (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat. Biotechnol. 23, 1137-1146
Adams, G. P., and Weiner, L. M. (2005) Monoclonal antibody therapy of cancer. Nat. Biotechnol. 23, 1147-1157
Carter, P. (2001) Improving the efficacy of antibody-based cancer therapies. Nat. Rev. Cancer 1, 118-129
Neri, D., and Bicknell, R. (2005) Tumour vascular targeting. Nat. Rev. Cancer 5, 436-446
St Croix, B., Rago, C., Velculescu, V., Traverso, G., Romans, K. E., Montgomery, E., Lal, A., Riggins, G. J., Lengauer, C., Vogelstein, B., and Kinzler, K. W. (2000) Genes expressed in human tumor endothelium. Science 289, 1197-1202
Huminiecki, L., and Bicknell, R. (2000) In silico cloning of novel endothelial-specific genes. Genome Res. 10, 1796-1806
Pasqualini, R., and Ruoslahti, E. (1996) Organ targeting in vivo using phage display peptide libraries. Nature 380, 364-366
Arap, W., Pasqualini, R., and Ruoslahti, E. (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279, 377-380
Oh, P., Li, Y., Yu, J., Durr, E., Krasinska, K. M., Carver, L. A., Testa, J. E., and Schnitzer, J. E. (2004) Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429, 629-635
Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994-999
Saghatelian, A., and Cravatt, B. F. (2005) Assignment of protein function in the postgenomic era. Nat. Chem. Biol. 1, 130-142
Rybak, J. N., Ettorre, A., Kaissling, B., Giavazzi, R., Neri, D., and Elia, G. (2005) In vivo protein biotinylation for identification of organ-specific antigens accessible from the vasculature. Nat. Methods 2, 291-298
Silacci, M., Brack, S., Schirru, G., Marlind, J., Ettorre, A., Merlo, A., Viti, F., and Neri, D. (2005) Design, construction, and characterization of a large synthetic human antibody phage display library. Proteomics 5, 2340-2350
Brack, S. S., Silacci, M., Birchler, M., and Neri, D. (2006) Tumor-targeting properties of novel antibodies specific to the large isoform of tenascln-C. Clin. Cancer Res. 12, 3200-3208
Takeshita, S., Kikuno, R., Tezuka, K., and Amann, E. (1993) Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. Biochem. J. 294, 271-278
Winter, G., Griffiths, A. D., Hawkins, R. E., and Hoogenboom, H. R. (1994) Making antibodies by phage display technology. Annu. Rev. Immunol. 12, 433-455
Zardi, L., Camemolla, B., Siri, A., Petersen, T. E., Paolella, G., Sebastio, G., and Baralle, F. E. (1987) Transformed human cells produce a new fibronectin isoform by preferential alternative splicing of a previously unobserved exon. EMBO J. 6, 2337-2342
Pini, A., Viti, F., Santucci, A., Carnemolla, B., Zardi, L., Neri, P., and Neri, D. (1998) Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J. Biol. Chem. 273, 21769-21776
Castellani, P., Borsi, L., Carnemolla, B., Biro, A., Dorcaratto, A., Viale, G. L., Neri, D., and Zardi, L. (2002) Differentiation between high- and low-grade astrocytoma using a human recombinant antibody to the extra domain-B of fibronectin. Am. J. Pathol. 161, 1695-1700
Borsi, L., Balza, E., Bestagno, M., Castellani, P., Camemolla, B., Biro, A., Leprini, A., Sepulveda, J., Burrone, O., Neri, D., and Zardi, L. (2002) Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int. J. Cancer 102, 75-85
Berndorff, D., Borkowski, S., Sieger, S., Rother, A., Friebe, M., Viti, F., Hilger, C. S., Cyr, J. E., and Dinkelborg, L. M. (2005) Radioimmuno-therapy of solid tumors by targeting extra domain B fibronectin: identification of the best-suited radioimmunoconjugate. Clin. Cancer Res. 11, 7053s-7063s
Carnemolla, B., Borsi, L., Balza, E., Castellani, P., Meazza, R., Bemdt, A., Ferrini, S., Kosmehl, H., Neri, D., and Zardi, L. (2002) Enhancement of the antitumor properties of interleukin-2 by its targeted delivery to the tumor blood vessel extracellular matrix. Blood 99, 1659-1665
Ebbinghaus, C., Ronca, R., Kaspar, M., Grabulovski, D., Bemdt, A., Kosmehl, H., Zardi, L., and Neri, D. (2005) Engineered vascular-targeting antibody-interferon-gamma fusion protein for cancer therapy. Int. J. Cancer 116, 304-313
Menrad, A., and Menssen, H. D. (2005) ED-B fibronectin as a target for antibody-based cancer treatments. Expert Opin. Ther. Targets 9, 491-500
Anderson, N. L., and Anderson, N. G. (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics 1, 845-867
Sasaki, H., Yu, C. Y., Dai, M., Tam, C., Loda, M., Auclair, D., Chen, L. B., and Elias, A. (2003) Elevated serum periostin levels in patients with bone metastases from breast but not lung cancer. Breast Cancer Res. Treat. 77, 245-252
Dorai, T., Sawczuk, I. S., Pastorek, J., Wiernik, P. H., and Dutcher, J. P. (2005) The role of carbonic anhydrase IX overexpression in kidney cancer. Eur. J. Cancer 41, 2935-2947
Mitchell, M. S., Kan-Mitchell, J., Minev, B., Edman, C., and Deans, R. J. (2000) A novel melanoma gene (MG50) encoding the interleukin 1 receptor antagonist and six epitopes recognized by human cytolytic T lymphocytes. Cancer Res. 60, 6448-6456
de Wit, N. J., Weidle, U. H., Ruiter, D. J., and van Muijen, G. N. (2002) Expression profiling of MMA-1a and splice variant MMA-1 b: new cancer/testis antigens identified in human melanoma. Int. J. Cancer 98, 547-553
Fabbri, M., Castellani, P., Gotwals, P. J., Kotelianski, V., Zardi, L., and Zocchi, M. R. (1996) A functional monoclonal antibody recognizing the human α1-integrin I-domain. Tissue Antigens 48, 47-51
Senger, D. R., Perruzzi, C. A., Streit, M., Koteliansky, V. E., de Fougerolles, A. R., and Detmar, M. (2002) The α(1)β(1) and α(2)β(1) integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis. Am. J. Pathol. 160, 195-204
Yano, Y., Hayashi, Y., Sano, K., Nagano, H., Nakaji, M., Seo, Y., Ninomiya, T., Yoon, S., Yokozaki, H., and Kasuga, M. (2004) Expression and localization of ecto-nucleotide pyrophosphatase/phosphodiesterase I-1 (E-NPP1/PC-1) and -3 (E-NPP3/CD203c/PD-1β/B10/gp130(RB13-6)) in inflammatory and neoplastic bile duct diseases. Cancer Lett. 207, 139-147
Uhlen, M., Bjorling, E., Agaton, C., Szigyarto, C. A., Amini, B., Andersen, E., Andersson, A. C., Angelidou, P., Asplund, A., Asplund, C., et al. (2005) A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol. Cell. Proteomics 4, 1920-1932
Ismail, R. S., Baldwin, R. L., Fang, J., Browning, D., Karlan, B. Y., Gasson, J. C., and Chang, D. D. (2000) Differential gene expression between normal and tumor-derived ovarian epithelial cells. Cancer Res. 60, 6744-6749
Shao, R., Bao, S., Bai, X., Blanchette, C., Anderson, R. M., Dang, T., Gishizky, M. L., Marks, J. R., and Wang, X. F. (2004) Acquired expression of periostin by human breast cancers promotes tumor angiogenesis through up-regulation of vascular endothelial growth factor receptor 2 expression. Mol. Cell. Biol. 24, 3992-4003
Sasaki, H., Lo, K. M., Chen, L. B., Auclair, D., Nakashima, Y., Moriyama, S., Fukai, I., Tam, C., Loda, M., and Fujii, Y. (2001) Expression of Periostin, homologous with an insect cell adhesion molecule, as a prognostic marker in non-small cell lung cancers. Jpn. J. Cancer Res. 92, 869-873
Tai, I. T., Dai, M., and Chen, L. B. (2005) Periostin induction in tumor cell line explants and inhibition of in vitro cell growth by anti-periostin antibodies. Carcinogenesis 26, 908-915
Pukkila, M. J., Kosunen, A. S., Virtaniemi, J. A., Kumpulainen, E. J., Johansson, R. T., Kellokoski, J. K., Nuutinen, J., and Kosma, V. M. (2004) Versican expression in pharyngeal squamous cell carcinoma: an immunohistochemical study. J. Clin. Pathol. 57, 735-739
Voutilainen, K., Anttila, M., Sillanpaa, S., Tammi, R., Tammi, M., Saarikoski, S., and Kosma, V. M. (2003) Versican in epithelial ovarian cancer: relation to hyaluronan, clinicopathologic factors and prognosis. Int. J. Cancer 107, 359-364
Suwiwat, S., Ricciardelli, C., Tammi, R., Tammi, M., Auvinen, P., Kosma, V. M., LeBaron, R. G., Raymond, W. A., Tilley, W. D., and Horsfall, D. J. (2004) Expression of extracellular matrix components versican, chondroitin sulfate, tenascin, and hyaluronan, and their association with disease outcome in node-negative breast cancer. Clin. Cancer Res. 10, 2491-2498
Pirinen, R., Leinonen, T., Bohm, J., Johansson, R., Ropponen, K., Kumpulainen, E., and Kosma, V. M. (2005) Versican in nonsmall cell lung cancer: relation to hyaluronan, clinicopathologic factors, and prognosis. Hum. Pathol 36, 44-50
Mauri, P., Scarpa, A., Nascimbeni, A. C., Benazzi, L., Parmagnani, E., Mafficini, A., Delia Peruta, M., Bassi, C., Miyazaki, K., and Sorio, C. (2005) Identification of proteins released by pancreatic cancer cells by multidimensional protein identification technology: a strategy for identification of novel cancer markers. FASEB J. 19, 1125-1127
Lambert, J. M. (2005) Drug-conjugated monoclonal antibodies for the treatment of cancer. Curr. Opin. Pharmacol, 5, 543-549
Kaspar, M., Zardi, L., and Neri, D. (2006) Fibronectin as target for tumor therapy. Int. J Cancer 118, 1331-1339
Silacci, M., Brack, S. S., Spaeth, N., Buck, A., Hillinger, S., Arni, S., Weder, W., Zardi, L., and Neri, D. (2006) Human monoclonal antibodies to domain C of tenascin-C selectively target solid tumors in vivo. Protein Eng. Des. Sel., in press
Christian, S., Pilch, J., Akerman, M. E., Porkka, K., Laakkonen, P., and Ruoslahti, E. (2003) Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J. Cell Biol. 163, 871-878
Warford, A., Howat, W., and McCafferty, J. (2004) Expression profiling by high-throughput immunohistochemistry. J. Immunol. Methods 290, 81-92