Saturn; auroral phenomena; main oval; magnetic field; solar wind
Abstract :
[en] Outer planet auroras have been imaged for more than a decade, yet understanding their physical origin requires simultaneous remote and in situ observations. The first such measurements at Saturn were obtained in January 2007, when the Hubble Space Telescope imaged the ultraviolet aurora, while the Cassini spacecraft crossed field lines connected to the auroral oval in the high-latitude magnetosphere near noon. The Cassini data indicate that the noon aurora lies in the boundary between open- and closed-field lines, where a layer of upward-directed field-aligned current flows whose density requires downward acceleration of magnetospheric electrons sufficient to produce the aurora. These observations indicate that the quasi-continuous main oval is produced by the magnetosphere-solar wind interaction through the shear in rotational flow across the open-closed-field line boundary.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Bunce, E. J.
Arridge, C. S.
Clarke, J. T.
Coates, A. J.
Cowley, S. W. H.
Dougherty, Michele K.; Imperial College of Science and Technology (London) > Blackett Laboratory
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Hansen, K. C.
Nichols, J. D.
Southwood, D. J.
Talboys, D. L.
Language :
English
Title :
Origin of Saturn's aurora: Simultaneous observations by Cassini and the Hubble Space Telescope
Publication date :
2008
Journal title :
Journal of Geophysical Research
ISSN :
0148-0227
eISSN :
2156-2202
Publisher :
American Geophysical Union, Washington, United States - District of Columbia
Volume :
113
Issue :
A9
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
BELSPO - SPP Politique scientifique - Service Public Fédéral de Programmation Politique scientifique
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Arridge, C. S., N. Achilleos, M. K. Dougherty, K. K. Khurana, and C. T. Russell (2006), Modeling the size and shape of Saturn's magnetopause with variable dynamic pressure, J. Geophys. Res., 111, A11227, doi:10.1029/2005JA011574.
Badman, S. V., E. J. Bunce, S. W. H. Cowley, D. Grodent, J.-C. Gérard, and S. E. Milan (2005), Open flux estimates in Saturn's magnetosphere during the January 2004 Cassini-HST campaign, and implications for reconnection rates, J. Geophys. Res., 110, A11216, doi:10.1029/ 2005JA011240.
Badman, S. V., S. W. H. Cowley, J.-C. Gérard, and D. Grodent (2006), A statistical analysis of the location and width of Saturn's southern auroras, Ann. Geophys., 24, 3533-3545.
Bunce, E. J., S. W. H. Cowley, I. I. Alexeev, C. S. Arridge, M. K. Dougherty, J. D. Nichols, and C. T. Russell (2007), Cassini observations of the variation of Saturn's ring current parameters with system size, J. Geophys. Res., 112, A10202, doi:10.1029/2007JA012275.
Bunce, E. J., C. S. Arridge, S. W. H. Cowley, and M. K. Dougherty (2008), Magnetic field structure of Saturn's dayside magnetosphere and its mapping to the ionosphere: Results from ring current modeling, J. Geophys. Res., 113, A02207, doi:10.1029/2007JA012538.
Clarke, J. T., D. Grodent, S. W. H. Cowley, E. J. Bunce, P. Zarka, J. E. P. Connerney, and T. Satoh (2004), Jupiter's aurora, in Jupiter: The Planet, Satellites and Magnetosphere, edited by F. Bagenal, T. Dowling, and W. McKinnon, Cambridge Planetary Science, Cambridge.
Clarke, J. T., et al. (2005), Morphological differences between Saturn's ultraviolet aurorae and those of Earth and Jupiter, Nature, 433, 717-719.
Connerney, J. E. P., M. H. Acuña, and N. Ness (1983), Currents in Saturn's magnetosphere, J. Geophys. Res., 88, 8779-8789.
Cowley, S. W. H., and E. J. Bunce (2001), Origin of the main auroral oval in Jupiter's coupled magnetosphere-ionosphere system, Planet. Space Sci., 49, 1067-1088.
Cowley, S. W. H., and E. J. Bunce (2003), Corotation-driven magneto-sphere-ionosphere coupling currents in Saturn's magnetosphere and their relation to the auroras, Ann. Geophys., 21, 1691-1707.
Cowley, S. W. H., E. J. Bunce, and R. Prangé (2004a), Saturn's polar ionospheric flows and their relation to the main auroral oval, Ann. Geophys., 22, 1379.
Cowley, S. W. H., E. J. Bunce, and J. M. O'Rourke (2004b), A simple quantitative model of plasma flows and currents in Saturn's polar ionosphere, J. Geophys. Res., 109, A05212, doi:10.1029/2003JA010375.
Cowley, S. W. H., S. V. Badman, E. J. Bunce, J. T. Clarke, J.-C. Gérard, D. Grodent, C. M. Jackman, S. E. Milan, and T. K. Yeoman (2005), Reconnection in a rotation-dominated magnetosphere and its relation to Saturn's auroral dynamics, J. Geophys. Res., 110, A02201, doi:10.1029/ 2004JA010796.
Davis, L., Jr., and E. J. Smith (1990), A model of Saturn's magnetic field based on all available data, J. Geophys. Res., 95, 15,257-15,267.
Dougherty, M. K., et al. (2005), Cassini magnetometer observations during Saturn orbit insertion, Science, 307, 1266-1270.
Gérard, J.-C., D. Grodent, J. Gustin, A. Saglam, J. T. Clarke, and J. T. Trauger (2004), Characteristics of Saturn's FUV aurora observed with the Space Telescope Imaging Spectrograph, J. Geophys. Res., 109, A09207, doi:10.1029/2004JA010513.
Grodent, D., J.-C. Gérard, S. W. H. Cowley, E. J. Bunce, and J. T. Clarke (2005), The global morphology of Saturn's southern ultraviolet aurora, J. Geophys. Res., 110, A07215, doi:10.1029/2004JA010983.
Hill, T. W. (2001), The Jovian auroral oval, J. Geophys. Res., 106, 8101-8107.
Knight, S. (1973), Parallel electric fields, Planet Space Sci., 21, 741-750.
Kurth, W. S., et al. (2005), An Earth-like correspondence between Saturn's auroral features and radio emission, Nature, 433, 722-725.
Sittler, E. C., Jr., M. F. Blanc, and J. D. Richardson (2006), Proposed model for Saturn's auroral response to the solar wind: Centrifugal instability model, J. Geophys. Res., 111, A06208, doi:10.1029/2005JA011191.
Southwood, D. J., and M. G. Kivelson (2001), A new perspective concerning the influence of the solar wind on Jupiter, J. Geophys. Res., 106, 6123-6130.
Zieger, B., and K. C. Hansen (2008), Statistical validation of a solar wind propagation model from 1 to 10 AU, J. Geophys. Res., 113, A08107, doi:10.1029/2008JA013046.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.