[en] We present an analysis of a series of observations of the auroral/polar regions of Jupiter, carried out between September 8 and 11, 1998, making use of the high-resolution spectrometer, CSHELL, on the NASA InfraRed Telescope Facility (IRTF), Mauna Kea, Hawaii; these observations spanned an "auroral heating event." This analysis combines the measured line intensities and ion velocities with a one-dimensional model vertical profile of the jovian thermosphere/ionosphere. We compute the model line intensities both assuming local thermodynamic equilibrium (LTE) and, relaxing this condition (non-LTE), through detailed balance calculations, in order to compare with the observations. Taking the model parameters derived, we calculate the changes in heating rate required to account for the modelled temperature profiles that are consistent with the measured line intensities. We compute the electron precipitation rates required to give the modelled ion densities that are consistent with the measured line intensities, and derive the corresponding Pedersen conductivities. We compute the changes in heating due to Joule heating and ion drag derived from the measured ion velocities, and modelled conductivities, making use of ion-neutral coupling coefficients derived from a 3-D global circulation model. Finally, we compute the cooling due to the downward conduction of heat and the radiation-to-space from the H-3(+) molecular ion and hydrocarbons. Comparison of the various heating and cooling terms enables us to investigate the balance of energy inputs into the auroral/polar atmosphere. Increases in Joule heating and ion drag are sufficient to explain the observed heating of the atmosphere; increased particle precipitation makes only a minor heating contribution. But local cooling effects-predominantly radiation-to-space-are shown to be too inefficient to allow the atmosphere to relax back to pre-event thermal conditions. Thus we conclude that this event provides observational, i.e. empirical, evidence that heat must be transported away from the auroral/polar regions by thermally or mechanically driven winds. (c) 2005 Elsevier Inc. All rights reserved.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Melin, Henrik; University College London > Department of Physics and Astronomy > Atmospheric Physics Laboratory
Miller, Steve; University College London > Department of Physics and Astronomy > Atmospheric Physics Laboratory
Stallard, Tom; University College London > Department of Physics and Astronomy > Atmospheric Physics Laboratory
Smith, Chris; University College London > Department of Physics and Astronomy > Atmospheric Physics Laboratory
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Language :
English
Title :
Estimated energy balance in the jovian upper atmosphere during an auroral heating event
Publication date :
March 2006
Journal title :
Icarus
ISSN :
0019-1035
eISSN :
1090-2643
Publisher :
Academic Press Inc Elsevier Science, San Diego, United States - California
N. Achilleos S. Miller J. Tennyson A.D. Aylward I. Mueller-Wodarg D. Rees JIM: A time-dependent, three-dimensional model of Jupiter's thermosphere and ionosphere J. Geophys. Res. 103 1998 20089-20112
G.E. Ballester S. Miller J. Tennyson L.M. Trafton T.R. Geballe Latitudinal temperature variations of jovian H3+ Icarus 107 1994 189-194
S.W. Bougher J.H. Waite Jr. T. Majeed G.R. Gladstone Jupiter Thermospheric General Circulation Model (JTGCM). 1. Global structure and dynamics driven by auroral and Joule heating J. Geophys. Res. 110 2005 4008
A.L. Broadfoot 16 colleagues Extreme ultraviolet observations from Voyager 1 encounter with Jupiter Science 204 1979 8259
J. Clarke J. Caldwell T. Skinner R. Yelle The aurora and airglow of Jupiter M.J.S. Belton R.A. West J. Rahe Time Variable Phenomena in the Jovian System 1989 NASA Washington 211-220
S.W.H. Cowley E.J. Bunce Origin of the main auroral oval in Jupiter's coupled magnetosphere-ionosphere system Planet. Space Sci. 49 2001 1067-1088
P. Drossart 11 colleagues Detection of H3+ on Jupiter Nature 340 1989 539-541
P. Drossart B. Bézard S.K. Atreya J. Bishop J.H. Waite Jr. D. Boice Thermal profiles in the auroral regions of Jupiter J. Geophys. Res. 98 1993 18803-18811
A. Evitiar A.D. Barbosa Jovian magnetospheric neutral wind and auroral precipitation J. Geophys. Res. 89 1984 7393
J. Geiss A. Buergi Diffusion and thermal diffusion in partially ionized gases in the atmospheres of the sun and planets Astron. Astrophys. 159 1986 1-15
D. Grodent J.H. Waite Jr. J.-C. Gerard A self-consistent model of the jovian auroral thermal structure J. Geophys. Res. 106 2001 12933-12952
M.P. Hickey R.L. Walterscheid G. Schubert Gravity wave heating and cooling in Jupiter's thermosphere Icarus 148 2000 266-281
T.W. Hill Inertial limit on corotation J. Geophys. Res. 84 1979 6554-6558
T.W. Hill The jovian auroral oval J. Geophys. Res. 106 2001 8101-8108
W.B. Hubbard V. Haemmerle C.C. Porco G.H. Rieke M.J. Rieke The occultation of SAO 78505 by Jupiter Icarus 113 1995 103-109
Y.H. Kim J.L. Fox H.S. Porter Densities and vibrational distribution of H3+ in the jovian auroral atmosphere J. Geophys. Res. 97 1992 6093-6101
H.A. Lam N. Achilleos S. Miller J. Tennyson L.M. Trafton T.R. Geballe G.E. Ballester A baseline spectroscopic study of the infrared auroras of Jupiter Icarus 127 1997 379-393
J.G. Luhmann Ionospheres In: M.G. Kivelson C.T. Russell (Eds), Introduction to Space Physics 1995 Cambridge Univ. Press Cambridge, UK 183-202
M.A. McGrath P.D. Feldman H.W. Moos G.E. Ballester IUE observations of the jovian dayglow emission Geophys. Res. Lett. 18 1989 583-586
K.I. Matcheva D.F. Strobel Heating of Jupiter's thermosphere by dissipation of gravity waves due to molecular viscosity and heat conduction Icarus 140 1999 328-340
H. Melin S. Miller T. Stallard D. Grodent Non-LTE effects on H3+ emission in the jovian upper atmosphere Icarus 178 2005 97-103
S. Miller R.D. Joseph J. Tennyson Infrared emissions of H3+ in the atmosphere of Jupiter in the 2.1 and 4.0 micron region Astrophys. J. 360 1990 L55-L58
S. Miller H.A. Lam J. Tennyson What astronomy has learned from observations of H3+ Can. J. Phys. 72 1994 760-771
S. Miller N. Achilleos G.E. Ballester H. Lam J. Tennyson T.R. Geballe L.M. Trafton Mid-to-low latitude H3+ emission from Jupiter Icarus 130 1997 57-67
S. Miller 10 colleagues The role of H3+ in planetary atmospheres Philos. Trans. R. Soc. 358 2000 2485-2502
G. Millward S. Miller T. Stallard A. Aylward N. Achilleos On the dynamics of the jovian ionosphere and thermosphere. III. The modelling of auroral conductivity Icarus 160 2002 95-107
G. Millward S. Miller T. Stallard A. Aylward N. Achilleos On the dynamics of the jovian ionosphere and thermosphere. IV. Ion-neutral coupling Icarus 173 2005 200-211
L. Neale S. Miller J. Tennyson Spectroscopic properties of the H3+ molecule: A new calculated linelist Astrophys. J. 464 1996 516-520
T. Oka T.R. Geballe Observations of the 4 micron fundamental band of H3+ in Jupiter Astrophys. J. 351 1990 L53-L56
T. Oka E. Epp Non-thermal rotational distribution of H3+ Astrophys. J. 613 2004 349-354
E. Raynaud E. Lellouch J.-P. Maillard G.R. Gladstone J.H. Waite Jr. B. Bézard P. Drossart T. Fouchet Spectro-imaging observations of Jupiter's 2-μm auroral emission. I. H3+ distribution and temperature Icarus 171 2004 133-152
D. Rego N. Achilleos T. Stallard S. Miller R. Prangé M. Dougherty R.D. Joseph Supersonic winds in Jupiter's aurorae Nature 399 1999 121-124
D. Rego S. Miller N. Achilleos R. Prangé R.D. Joseph Latitudinal profiles of the jovian IR emissions of H3+ at 4 μm with the NASA Infrared Telescope Facility: Energy inputs and thermal balance Icarus 147 2000 366-385
A. Seiff D.B. Kirk T.C.D. Knight L.A. Young F.S. Milos E. Venkatapathy J.D. Mihalov R.C. Blanchard R.E. Young G. Schubert Thermal structure of Jupiter's upper atmosphere derived from the Galileo probe Science 276 1997 102-104
C.G.A. Smith S. Miller A. Aylward Magnetospheric energy input into the upper atmospheres of giant planets Ann. Geophys. 23 2005 1943-1947
J. Sommeria L. ben Jaffel R. Prangé On the existence of supersonic jets in the upper atmosphere of Jupiter Icarus 118 1995 2-24
D.J. Southwood M.G. Kivelson A new perspective on the influence of the solar wind on the jovian magnetosphere J. Geophys. Res. 106 2001 6123-6130
T. Stallard S. Miller G. Millward R.D. Joseph On the dynamics of the jovian ionosphere and thermosphere. I. The measurement of ion winds Icarus 154 2001 475-491
T. Stallard S. Miller G. Millward R.D. Joseph On the dynamics of the jovian ionosphere and thermosphere. II. The measurement of H3+ vibrational temperature, column density and total emission Icarus 156 2002 498-514
D.F. Strobel G.R. Smith On the temperature of the jovian thermosphere J. Atmos. Sci. 30 1973 718-725
V.M. Vasyliunas P. Song Meaning of ionospheric Joule heating J. Geophys. Res. 110 2005 2301-2308
J.H. Waite Jr. T. Cravens J. Kozyra A.F. Nagy S.K. Atreya Electron precipitation and related aeronomy of the jovian thermosphere and ionosphere J. Geophys. Res. 88 1983 6143-6163
J.H. Waite Jr. G.R. Gladstone W.S. Lewis P. Drossart T.E. Cravens A.N. Maurellis B.H. Mauk S. Miller Equatorial X-ray emissions: Implications for Jupiter's high exospheric temperatures Science 267 1997 104-108
R.V. Yelle S. Miller Jupiter's upper atmosphere In: F. Bagenal T. Dowling W. McKinnon (Eds.), Jupiter: The Planet, Satellites and Magnetosphere 2004 Cambridge Univ. Press Cambridge, UK 185-218
L.A. Young R.V. Yelle R. Young A. Seiff D.B. Kirk Gravity waves in Jupiter's thermosphere Science 376 1997 108-111
L.A. Young R.V. Yelle R. Young A. Seiff D.B. Kirk Gravity waves in Jupiter's stratosphere, as measured by the Galileo ASI experiment Icarus 173 2005 185-199