[en] Styrene has been polymerized by a Quinone Transfer Radical Polymerization (QTRP) based on the redox reaction of an ortho-quinone and a metal catalyst. Several metal acetylacetonates have been tested in this work. The radical polymerization of styrene is largely controlled when phenanthrenequinone (PhQ) is used with catalytic amounts of Co(acac)(2), Ni(acac)(2), Mn(acac)2 or 3, and Al(acac)(3). As a rule, in the presence of all these metallic complexes, the polystyrene molar mass increases with the monomer conversion, and polydispersity (M-w/M-n) is in the 1.3-1.6 range (at least until 40% monomer conversion). Styrene polymerization has also been resumed by polystyrene chains prepared by QTRP. In the specific case of manganese acetylacetonates, an amine or phosphine ligand has to be added for the control to be effective. Finally, two mechanistic hypotheses have been proposed, depending on whether the oxidation state of the metal can be easily changed or not.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Caille, Jean-Raphaël; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Debuigne, Antoine ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Jérôme, Robert ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Language :
English
Title :
Quinone transfer radical polymerization (QTRP) of styrene: Catalysis by different metal complexes
Publication date :
01 July 2005
Journal title :
Journal of Polymer Science. Part A, Polymer Chemistry
Hawker, C. J.; Bosman, A. W.; Harth, E. Chem Rev 2001, 101, 3661.
Lohmeijer, B. G. G.; Schubert, U. S. J Polym Sci, Part A: Polym Chem 2004, 42, 4016.
Wang, J. S.; Matyjaszewski, K. J Am Chem Soc 1995, 5614.
Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Macromolecules 1995, 28, 1721.
Matyjaszewski, K.; Xia, J. Chem Rev 2001, 101, 2921.
Monge, S.; Darcos, V.; Haddleton, D. M. J Polym Sci, Part A: Polym Chem 2004, 42, 6299.
Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, P. T. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1998, 31, 5559.
Moad, G.; Chiefari, J.; Chong, Y. K.; Krstina, J.; Mayadunne, R.T.A.; Postma, A.; Rizzardo, E.; Thang, S. H. Polym Int 2000, 49, 993.
Hao, X.; Nilsson, C.; Jesberger, M.; Stenzel, M. H.; Malmström, E.; Davis, T. P.; Östmark, E.; Barner-Kowollik, C. J Polym Sci, Part A: Polym Chem 2004, 42, 5877.
Caille, J.-R.; Debuigne, A.; Jérôme, R. Macromolecules 2005, 38, 27.
Mayo, F. R. J Am Chem Soc 1968, 90, 1289.
Kukes, S. G.; Prokofev, A. I.; Masalimov, A. S.; Bubnov, N. N.; Solodovnikov, S. P.; Kabachnik, M. I. Izv Akad Nauk SSSR, Ser Khim 1978, 7, 1519.
Pierpont, C. G.; Lange, C. W. Prog Inorg Chem 1994, 41, 331.
Pierpont, C. G.; Buchanan, R. M. Coord Chem Rev 1981, 38, 45.
Rakhimov, R. R.; Solozhenkin, P. M.; Kopitaya, N. N.; Pupkov, V. S.; Prokofev, A. I. Dokl Akad Nauk SSSR 1988, 300, 1177.
Kessel, S. L.; Emberson, R. M.; Debrunner, P. G.; Hendrickson, D. N. Inorg Chem 1980, 19, 1170.
Foord, S. G. J Chem Soc 1940, 48.
Bamford, C. H.; Ferrar, A. N. Chem Com 1970, 315.
Abakumov, G. A.; Klimov, E. S. Dokl Akad Nauk SSSR 1972, 202, 827.
Barker, P. E.; Hudson, A.; Jackson, R. A. J Organomet Chem 1981, 208, C1.
Davies, A. G.; Florjanczyk, Z.; Lusztyk, E.; Lusztyk, J. J Organomet Chem 1982, 229, 215.