downscaling; modem pollen; classification and regression trees (CART); Kappa statistics; vegetation model
Abstract :
[en] Global vegetation models are remarkably effective when considering large areas such as Europe. However, their accuracy at finer scales remains to be tested. In this paper, we validate the simulation of modem potential vegetation by the CARbon Assimilation In the Biosphere (CARAIB) model in Europe. Then, in order to evaluate the simulation of tree group distributions at a finer scale, in France, we present a comparison between observed distributions, distributions reconstructed from palynological data, and model simulated ranges. The results will help to validate past vegetation simulations. For this analysis, we use Bioclimatic Affinity Groups (BAGs), based on vegetation groups' climatic tolerances and requirements. The CARAIB model was adapted to simulate the net primary productivity (NPP), biomass and range of the arboreal BAGs. In Europe, at a 30' latitude/longitude grid scale, simulated NPP of BAGs are used to define classes of vegetation as being present or absent, with a classification rule, based on Kappa statistics. In France, at a 10' lat./long. scale, a second discriminant analysis, based on Classification And Regression Tree (CART), allows for a similar classification with BAG pollen percentages. At each palynological sampling site, we then compared the simulation to the reconstruction from pollen data. With 30' lat./long. resolution, most thresholds that discriminate NPP into absence or presence classes are low, ranging from 1 to 77 g/m(2). Agreement indices between observed and simulated distributions range from 0.4 to 0.83, with broad scale BAG potential patterns and boundaries being accurately simulated by CARAIB. In France, on the 10' lat./long. scale, pollen percentages correctly account for BAG presence/absence despite non-linear pollen-vegetation relationships. Agreement ratios between observed and reconstructed patterns range from 0.53 to 0.95. At the 10' lat./long. scale, the validation of simulated ranges with pollen data is reliable for 9 of 13 arboreal BAGs and acceptable for three more BAGs. The discrepancies highlight the gap between potential and actual distribution areas. The filling of simulated potential ranges, such as the Atlantic coast and near Mediterranean border, are uncompleted as actual ranges are limited by a number of climate and dispersal constraints related to competition as well as historical, geographical and anthropogenic factors. Our results suggest that the simulation of these constraints would be a major improvement for the CARAIB model. (c) 2007 Elsevier B.V. All rights reserved.
Laurent, Jeanne-Marine; Université Montpellier II > Institut des Siences de l'Evolution de Montpellier
François, Louis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Bar-Hen, Avner; Universite Aix-Marseille III > FST Saint Jerome > LATP
Bel, Liliane; Université de Paris Sud > Laboratoire de Modélisation Stochastique et Statistique
Cheddadi, Rachid; Université Montpellier II > Institut des Siences de l'Evolution de Montpellier
Language :
English
Title :
European bioclimatic affinity groups: Data-model comparisons
Andersen S.T. The relative pollen productivity and pollen representation of North European trees, and correlation factors for tree pollination spectra. Dan. Geol. Unders. II 96 (1970) 1-135
Beaulieu, J.-L., 1977. Contribution pollenanalytique à l'histoire Tardiglaciaire et Holocène de la végétation des Alpes méridionales françaises. PhD Thesis, Aix-Marseille III University, France.
Bel L., Allard D., Laurent J.-M., Bar-Hen A., and Cheddadi R. Map comparisons and spatial discrimination. Proc. Vth Eur. Conf. Geostat. Environ. Appl (2004), Kluwer, Dordrecht, NL
Bradshaw R., and Webb III T. Relationships between contemporary pollen and vegetation data from Wisconsin and Michigan, USA. Ecology 66 (1985) 721-737
Breiman L., Friedman J.H., Olshen R.A., and Stone J.C. Classification and regression trees (1984), Wadsworth, Belmont, USA
Brisse H., Grandjouan G., De Ruffray P., and Garbolino E. SOPHY: une banque de données botaniques et écologiques en France (1998-2004). http://sophy.u-3mrs.fr/ Web site: http://sophy.u-3mrs.fr/
Broström, A., 2002. Estimating source area of pollen and pollen productivity in the cultural landscapes of southern Sweden - developing a palynological tool for quantifying past plant cover. Lundqua Ph D. Thesis 46, Lund, Sweden.
Brugiapaglia E., de Beaulieu J.-L., Guiot J., and Reille M. Transect de pluie pollinique et étagement de la végétation dans le Massif du Taillefer (Isère, France). Geogr. Phys. Quat. 52 2 (1998) 1-10
Calcotte R. Pollen source area and pollen productivity: evidence from forest hollows. J. Ecol. 83 (1995) 591-602
Cheddadi R., Guiot J., and Jolly D. The Mediterranean vegetation: what if the atmospheric CO2 increased?. Landsc. Ecol. 16 (2001) 667-675
Chuine I., Cambon G., and Comtois P. Scaling phenology from the local to the regional levels: advances from species-specific phenological models. Glob. Chang. Biol. 6 (2000) 1-11
Collatz G.J., Ribas-Carbo M., and Berry J.A. A coupled photosynthesis - stomatal conductance model for leaves of C4 plants. Aust. J. Plant Physiol. 19 (1992) 519-538
Conedera M., Krebs P., Tinner W., Pradella M., and Torriani D. The cultivation of Castanea sativa (Mill.) in Europe, from its origin to its diffusion on a continental scale. Veg. Hist. Archaeobot. 13 (2004) 161-179
Farquhar G.D., von Caemmerer S., and Berry J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149 (1980) 78-90
François L.M., Delire C., Warnant P., and Munhoven G. Modelling the glacial-interglacial changes in the continental biosphere. Global Planet. Change 16-17 (1998) 37-52
Harrison S.P., and Prentice I.C. Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations. Glob. Chang. Biol. 9 (2003) 983-1004
In: Heiniger U. (Ed). Castanea sativa: pathology, genetic resources, ecology and silviculture. For. Snow Landsc. Res vol. 76 (3) (2001) 327-517
Hicks S. The use of annual arboreal pollen deposition values for delimiting tree-lines in the landscape and exploring models of pollen dispersal. Rev. Palaeobot. Palynol. 117 (2001) 1-29
Hubert B., François L., Warnant P., and Strivay D. Stochastic generation of meteorological variables and effects on global models of water and carbon cycles in vegetation and soils. J. Hydrol. 212-213 (1998) 318-334
Huntley B., Berry P.M., Cramer W., and Mc Donald A. Modelling present and potential future ranges of some European higher plants using climate response surfaces. J. Biogeogr. 22 (1995) 967-1001
Jackson S.T., and Kearsley J.B. Quantitative representation of local forest composition in forest floor pollen assemblages. J. Ecol. 86 (1998) 474-490
Jackson S.T., and Lyford M.E. Pollen dispersal models in Quaternary plant ecology: assumptions, parameters and prescriptions. Bot. Rev. 65 1 (1999) 39-75
Jolly D., Harrison S.P., Damnati B., and Bonnefille R. Simulated climate and biomes of Africa during the Late Quaternary: comparison with pollen and lake status data. Quat. Sci. Rev. 17 (1998) 6-8
Kaplan J.O., Bigelow N.H., Prentice I.C., Harison S.P., Bartlein P.J., Christensen T.R., Cramer W., Matveyeva N.V., McGuire A.D., Murray D.F., Razzivhin V.Y., Smith B., Walker D.A., Anderson P.M., Andreev A.A., Brubaker L.B., Edwards M.E., and Lozhkin A.V. Climate change and Arctic ecosystems 2: modelling, paleodata-model comparisons and future projections. J. Geophys. Res. 108 D19 (2003) 8171
Kullman L. The changing face of the Alpine wolrd. Glob. Change Newsl. 57 (2004) 12-14
Laurent J.-M., Bar-Hen A., François L., Ghislain M., and Cheddadi R. Refining vegetation simulation models: from plant functional types to bioclimatic affinity groups of plants. J. Veg. Sci. 15 6 (2004) 739-746
Lüdeke M.K.B., Badeck F.-W., Otto R.D., Hager C., Donges S., Kindermann J., Wurth G., Lang T., Jakel U., Klaudius A., Range P., Habermehl S., and Kohlmaier G.H. The Frankfurt Biosphere Model. A global process oriented model for the seasonal and long term CO2 exchange between terrestrial ecosystems and the atmosphere. I. Model description and illustrative results for cold deciduous and boreal forests. Clim. Res. 4 (1994) 143-166
Luomajoki A. Adaptation of microsporogenesis of exotic conifers in Finland. For. Genet. 3 3 (1996) 153-160
Monserud R.A., and Leemans R. The comparison of global vegetation maps. Ecol. Model. 62 (1992) 275-293
Moore P.D., Webb J.A., and Collinson M.E. Pollen analysis (1991), Blackwell Scientific, London 216 pp.
Nabuurs G.-J., Schelhaas M.-J., Mohrens G.M.J., and Field C.B. Temporal evolution of the European forest sector carbon sink from 1950 to 1999. Glob. Chang. Biol. 9 (2003) 152-160
Nakagawa, T., 1998. Etudes palynologiques dans les Alpes fra,çaises centrales et méridionales: histoire de la végétation tardiglaciaire et holocène. PhD Thesis, Aix-Marseille III. University, Marseille, France.
New M., Hulme M., and Jones P. Representing twentieth-century space-time climate variability. J. Clim. 12 (1999) 829-856
New M., Lister D., Hulme M., and Makin I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21 (2002) 1-25
Ni J. Net Primary productivity in forests of China: scaling-up of national inventory data and comparison with model predictions. For. Ecol. Manag. 176 (2003) 484-495
Olson J.S., Watts J.A., and Allison L.J. Carbon in live vegetation of major world ecosystems. ORNL-5862 (1983), Oak Ridge National Laboratory, Oak Ridge, USA
Otto D., Rasse D., Kaplan J., Warnant P., and François L. Biospheric carbon stocks reconstructed and the Last Glacial Maximum: comparison between general circulation models using prescribed and computed sea surface temperature. Global Planet. Change 33 1-2 (2002) 117-138
Peng C.H., Guiot J., Van Campo E., and Cheddadi R. The vegetation carbon storage variation in Europe since 6000 BP: reconstruction from pollen. J. Biogeogr. 21 (1994) 19-31
Peng C.H., Guiot J., Van Campo E., and Cheddadi R. Temporal and spatial variations of terrestrial biomes and carbon storage since 13000 yr in Europe: reconstruction from pollen data and statistical models. Water Air Soil Pollut. 82 (1995) 375-390
Prentice I.C. Pollen representation, source area and basin size: toward a unified theory of pollen analysis. Quat. Res. 23 (1985) 76-86
Prentice I.C., and Helmisaari H. Silvics of north European trees: compilation, comparisons and implications for forest succession modelling. For. Ecol. Manag. 42 (1991) 79-93
Prentice I.C., Cramer W., Harrison S.P., Leemans R., Monserud R.A., and Solomon A.M. A global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr. 19 (1992) 117-134
Prentice I.C., Guiot J., Huntley B., Jolly D., and Cheddadi R. Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Clim. Dyn. 12 (1996) 185-194
Prentice I.C., Harrison S.P., Jolly D., and Guiot J. The climate and biomes of Europe at 6000 yr BP: comparison of model simulations and pollen based reconstructions. Quat. Sci. Rev. 17 6-7 (1998) 659-668
Prentice I.C., Jolly D., and BIOME 6000 participants. Mid-Holocene and glacial maximum vegetation geography of the northern continents and Africa. J. Biogeogr. 27 (2000) 507-519
Punt W., Blackmore S., Nilsson S., and Le Thomas A. Glossary of Pollen and Spore Terminology (1994), LPP Foundation, Utrecht 71 pp.
Scurlock J.M.O., Cramer W., Olson R.J., Parton W.J., and Prince S.D. Terrestrial NPP: toward a consistent data set for global model evaluation. Ecol. Appl. 9 3 (1999) 913-919
Sugita S. Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. J. Ecol. 82 (1994) 881-897
Sugita S., Gaillard M.-J., and Broström A. Landscape openness and pollen records: a simulation approach. The Holocene 9 4 (1999) 409-421
Svenning J.-C., and Skov F. Limited filling of the potential range in European tree species. Ecol. Lett. 7 (2004) 565-573
Sykes M.T., Prentice I.C., and Cramer W. A bioclimatic model for the potential distributions of north European tree species under present and future climates. J. Biogeogr. 23 (1996) 203-233
Thuiller W. BIOMOD - optimizing prediction of species distributions and projecting potential future shifts under global change. Glob. Chang. Biol. 9 (2003) 1353-1362
Tinner W., and Lotter A.F. Central European vegetation response to abrupt climate change at 8.2 ka. Geol. Soc. Am. 29 6 (2001) 551-554
Ulber M., Gugerli F., and Bozic G. EUFORGEN Technical guidelines for genetic conservation and use for Swiss stone Pine (Pinus cembra) International Plant Genetic Resources Institute, Rome, Italy (2004) 6 pp.
Warnant P., François L.M., Strivay D., and Gérard J.-C. CARAIB: a global model of terrestrial biological productivity. Glob. Biogeochem. Cycles 8 3 (1994) 255-270
Williams J.W., Shuman B.N., Webb III T., Bartlein P.J., and Leduc P.L. Late-Quaternary vegetation dynamics in North America: scaling from taxa to biomes. Ecol. Monogr. 74 2 (2004) 309-334
Yu G., Prentice I.C., Harrison S.P., and Sun X. Pollen-based biome reconstructions for China at 0 and 6000 years. J. Biogeogr. 25 (1998) 1055-1069
Yu G., Ke X., Xue B., and Ni J. The relationships between the surface arboreal pollen and the plants of the vegetation in China. Rev. Palaeobot. Palynol. 129 (2004) 187-198