[en] The therapeutic use of angiotensin converting enzyme (ACE) inhibitors, at a large scale, in arterial hypertension has showed that these molecules can exert, beneficial effects on insulin sensitivity and may reduce the occurrence of type 2 diabetes mellitus. One hypothesis explaining these effects of ACE inhibitors may relate to their capacity to interfere with bradykinin (BK) metabolism and action. BK may participate in the regulation of substrate utilization by, several tissues by improving blood flow and substrate delivery to the tissues and also by promoting translocation of glucose transporters. Moreover, BK has been shown to increase phosphorylation of insulin receptor and its cell substrates. BK also appears to improve the release of insulin. Furthermore, insulin may activate the kallikrein-kinin system, which consequently may increase its metabolic effects. However, in experimental diabetes mellitus, BK can participate to the inflammatory reaction leading to Langerhans islets destruction. In diabetes, whereas tissue kallikrein mRNA levels were reduced in several organs, an overexpression of kinin receptors, an increase in plasma levels of kininogens and kallikrein and an activation of the kinin system have all been reported. Lastly, kinins may be involved in the development of diabetic nephropathy. Reduction of kinin metabolism by ACE inhibitors might be involved in the beneficial effects exerted by these compounds in diabetic kidney functions. Copyright (C) 2004 John Wiley Sons, Ltd.
Disciplines :
Endocrinology, metabolism & nutrition
Author, co-author :
Damas, Jacques ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Département des sciences biomédicales et précliniques
Garbacki, Nancy ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Protéines et glycoprot. de matr.extracell. et membran.basal.
Lefèbvre, P. J.; Université de Liège - ULiège
Language :
English
Title :
The kallikrein-kinin system, angiotensin converting enzyme inhibitors and insulin sensitivity
Publication date :
2004
Journal title :
Diabetes/Metabolism Research and Reviews
ISSN :
1520-7552
eISSN :
1520-7560
Publisher :
John Wiley & Sons, Hoboken, United States - New Jersey
Ferrannini E, Haffner SM, Stern MP. Essential hypertension: an insulin resistant state. J Cardiovasc Pharmacol 1990; 15 (Suppl. 5): S18-S25.
De Fronzo RA, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia and atherosclerotic cardiovascular disease. Diabetes Care 1991; 14: 173-194.
Jausch KW, Hartl W, Günther B, Wichlmayr M, Rett K, Dietze G. Captopril enhances insulin responsiveness of forearm muscle tissue in non-insulin dependent diabetes mellitus. Eur J Clin Invest 1987; 17: 448-454.
Pollare T, Lithell H, Selinus I, Berne C. A comparison of the effects of hydrochlorothiazide and captopril on glucose and lipid metabolism in patients with hypertension. N Engl J Med 1989; 321: 868-873.
Torlone E, Rambotti AM, Perriello G, et al. ACE-inhibition increases hepatic and extrahepatic sensitivity to insulin in patients with type 2 (non-insulin-dependent) diabetes mellitus and arterial hypertension. Diabetologia 1991; 34: 119-125.
Gans ROB, Biol HJG, Nauta JJP, Popp-Snijders C, Heine RJ, Donker AJM. The effect of angiotensin-I converting enzyme inhibition on insulin action in healthy volunteer. Eur J Clin Invest 1991; 21: 527-533.
Paolisso G, Gambardella A, Verza M, D'Amore A, Sgambato S, Varrichio M. ACE inhibition improves insulin-sensitivity in aged insulin-resistant hypertensive patients. J Hum hypertens 1992; 6: 175-179.
Uehara M, Kishikawa H, Isami S, et al. Effect on insulin sensitivity of angiotensin converting enzyme inhibitors with or without a sulphydryl group: bradykinin may improve insulin resistance in dogs and humans. Diabetologia 1994; 37: 300-307.
Falkner B, Canessa M, Anzalone D. Effect of angiotensin converting enzyme inhibitor (lisinopril) on insulin sensitivity and sodium transport in mild hypertension. Am J hypertens 1995; 8: 454-460.
Torlone E, Britta M, Rambotti AM. Improved insulin action and glycemic control after long-term angiotensin converting enzyme inhibition in subjects with arterial hypertension and type II diabetes. Diabetes Care 1993; 16: 1347-1355.
Shamiss A, Carrol J, Peleg E, Grossman E, Rosenthal T. The effect of enalapril with or without hydrochlorothiazide on insulin sensitivity and other metabolic abnormalities of hypertensive patients with NIDDM. Am J hypertens 1995; 8: 276-281.
Vuorinen-Markkola H, Yki-Järvinen H. Antihypertensive therapy with enalapril improves glucose storage and insulin sensitivity in hypertensive patients with non-insulin-dependent diabetes mellitus. Metabolism 1995; 44: 85-89.
Fogari R, Zoppi A, Corradi L, Lazzari P, Mugellini A, Lusardi P. Comparative effects of lisinopril and losartan on insulin sensitivity in the treatment of non diabetic hypertensive patients. Br J Clin Pharmacol 1998; 46: 467-471.
Bunning P, Holmquist B, Riordan JF. Substrate specificity and kinetic characteristics of angiotensin converting enzyme. Biochemistry 1983; 22: 103-110.
Jaspard E, Alhenc-Gelas F. Catalytic properties of the two active sites of angiotensin I-converting enzyme on the cell surfaces. Biochem Biophys Res Commun 1995; 211: 528-534.
Bhoola KD, Figueroa CD, Worthy K. Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev 1992; 44: 1-80.
Kaplan AP, Kusumam J, Silverberg M. Pathways for bradykinin formation and inflammatory disease. J Allergy Clin Immunol 2002; 109: 195-209.
Schmaier AH. The plasma kallikrein-kinin system counterbalances the renin-angiotensin system. J Clin Invest 2002; 109: 1007-1009.
Cyr M, Lepage Y, Blais C, et al. Bradykinin and des-Arg9-bradykinin metabolic pathways and kinetics of activation of human plasma. Am J Physiol 2001; 281: H275-H283.
Marceau F. Kinin B1 receptors: a review. Immunopharmacology 1995; 30: 1-26.
Tomiyama H, Kushiro T, Abeta H, et al. Kinins contribute to the improvement of insulin sensitivity during treatment with angiotensin converting enzyme inhibitor. Hypertension 1994; 23: 450-455.
Kohlman O, Neves FAR, Ginoza M, et al. Role of bradykinin in insulin sensitivity and blood pressure regulation during hyperinsulinemia. Hypertension 1995; 25: 1003-1007.
Erlich Y, Rosenthal TJ. Contribution of bradykinin to the beneficial effects of ramipril in the fructose-fed rat. J Cardiovasc Pharmacol 1998; 31: 581-584.
Erlich Y, Mayk A, Rosenthal T. Nitric oxide does not participate in the metabolic effects of exogenous bradykinin in fructose-fed rats. Am J hypertens 2001; 14: 3-6.
Damas J, Bourdon V, Lefebvre PJ. Insulin sensitivity, clearance and release in kininogen-deficient rats. Exp Physiol 1999; 84: 549-SS7.
Duka I, Shenouda S, Johns C, Kintsurashvili F, Gavras I, Gavras H. Role of the B2 receptor of bradykinin in insulin sensitivity. Hypertension 2001; 38: 1355-1360.
Henriksen EJ, Jacob S, Augustin HJ, Dietze GJ. Glucose transport activity in insulin-resistant rat muscle: effects of angiotensin-converting enzyme inhibitors and bradykinin antagonism. Diabetes 1996; 45(suppl. 1): S125-S128.
Nakagawa H, Daihara M, Tamakawa H, Nozue T, Kawahara KJ. Effects of quinapril and losartan on insulin sensitivity in genetic hypertensive rats with different metabolic abnormalities. J Cardiovasc Pharmacol 1999; 34: 28-33.
Arbin V, Claperon N, Fournié-Zaluski M-C, Roques BP, Peyroux J. Acute effect of the dual angiotensin-converting enzyme and neutral endopeptidase 24-11 inhibitor mixampril on insulin sensitivity in obese Zucker rat. Br J Pharmacol 2001; 133: 495-502.
Arbin V, Claperon N, Fournie-Zaluski MC, Roques BP, Peyroux J. Effects of dual angiotensin-converting enzyme and neutral endopeptidase 24-11 chronic inhibition by mixampril on insulin sensitivity in lean and obese Zucker rats. J Cardiovasc Pharmacol 2003; 41: 254-264.
Wang C-H, Leung N, Lapointe N, et al. Vasopeptidase inhibitor omapatrilat induces profound sensitization and increases myocardial glucose uptake in Zucker fatty rats. Circulation 2003; 107: 1923-1929.
Cahova M, Vavrinkova H, Tutterova M, Meschisvilli E, Kazdova L. Captopril enhanced insulin-stimulated glycogen synthesis in skeletal muscle but not fatty acid synthesis in adipose tissue of hereditary hypertriglyceridemic rats. Metabolism 2003; 52: 1406-1412.
Henriksen EJ, Jacob S, Fogt DL, Dietze GJ. Effect of chronic bradykinin administration on insulin action in an animal model of insulin resistance. Am J Physiol 1998; 275: R40-R45.
Henriksen EJ, Jacob S, Kinick TR, Teachey MK, Krekler M. Selective angiotensin II receptor antagonism reduces insulin resistance in obese Zucker rats. Hypertension 2001; 38: 884-886.
Tschöpe C, Schultheiss H-P, Walther T. Multiple interactions between the renin-angiotensin and the kallikrein-kinin systems: role of ACE inhibition and AT1 receptor blockade. J Cardiovasc Pharmacol 2002; 39: 478-487.
Tom B, Dendorfer A, Danser AHJ. Bradykinin, angiotensin-(1-7), and ACE inhibitors: how they interact. Int J Biochem Cell Biol 2003; 35: 792-801.
Ignjatovic T, Tan F, Brovkovych V, Skidgel RA, Erdös EG. Novel mode of action of angiotensin I-converting enzyme inhibitors: direct activation of B1 receptor. J Biol Chem 2002; 277: 16847-16852.
Fortin J-P, Gobeil F, Adam A, Regoli D, Marceau F. Do angiotensin-converting enzyme inhibitors directly stimulate the kinin B1 receptor?. Am J Physiol 2003; 285: H277-H282.
Laakso M, Karjalaainen L, Lempiainen-Kuosa P. Effects of losartan on insulin sensitivity in hypertensive subjects. Hypertension 1996; 28: 392-396.
Iimura O, Shimamoto K, Matsuda K, et al. Effects of angiotensin converting enzyme inhibitor on insulin sensitivity in fructose fed hypertensive and essential hypertensives. Am J hypertens 1995; 8: 353-357.
Iyer S, Katovich M. Effect of acute and chronic losartan treatment on glucose tolerance and insulin sensitivity in fructose fed rats. Am J Hypertens 1996; 9: 662-668.
Henriksen EJ, Jacob S. Modulation of metabolic control by angiotensin converting enzyme (ACE) inhibition. J Cell Physiol 2003; 196: 171-179.
Yokota K, Kishida M, Ogura T, et al. Role of bradykinin in renoprotective effects by angiotensin II type 1 receptor antagonist in salt-sensitive hypertension. Hypertens Res 2003; 26: 265-272.
Hornig B, Kohler C, Schlink D, Tatge H, Drexler H. AT1-receptor antagonism improves endothelial function in coronary artery disease by a bradykinin/B2-receptor-dependent mechanism. Hypertension 2003; 41: 1092-1095.
Yagil Y, Yagil C. ACE2 modulates blood pressure in the mammalian organism. Hypertension 2003; 41: 871-873.
Baron AD. Hemodynamic actions of insulin. Ant J Physiol 1994; 267: E187-E202.
Baron AD, Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G. Insulin-mediated skeletal muscle vasodilatation contributes to both insulin sensitivity and responsiveness in lean humans. J Clin Invest 1995; 96: 786-792.
Nuutila P, Raitakari M, Laine H, et al. Role of blood flow in regulating insulin-stimulated glucose uptake in humans. J Clin Invest 1996; 97: 1741-1747.
Laine H, Yki-Järvinen H, Kirvelä O, et al. Insulin resistance of glucose uptake in skeletal muscle cannot be ameliorated by enhancing endothelium-dependent blood flow in obesity. J Clin Invest 1998; 101: 1156-1162.
Frossard M, Joukhadar C, Steffen G, Schmid R, Eichler HG, Muller M. Paracrine effects of angiotensin-converting-enzyme and angiotensin-II-receptor inhibition on transcapillary glucose transport in humans. Life Sci 2000; 66: PL147-PL154.
Henriksen EJ, Jacob S. Effects of captopril on glucose transport activity in skeletal muscle of obese Zucker rats. Metabolism 1995; 44: 267-272.
Dietze G, Wicklmayr M, Böttger I, et al. The kallikrein-kinin system and muscle metabolism: biochemical aspects. Agents Actions 1980; 10: 335-338.
Dietze GJ, Wicklmayr M, Rett K, Jacob S, Henriksen FJ. Potential role of bradykinin in forearm muscle metabolism in humans. Diabetes 1996; 45(Suppl. 1): S110-S114.
Wicklmayr M, Dietze G, Günther B, et al. The kallikrein-kinin system and muscle metabolism: clinical aspects. Agents Actions 1980; 10: 339-343.
Shimojo N, Chao J, Chao L, Margolius HS, Mayfield RK. Identification and characterization of a tissue kallikrein in rat skeletal muscle. Biochem J 1987; 243: 773-778.
Rett K, Wicklmayr M, Fink E, Maerker E, Dietze G, Mehnert H. Local generation kinins in working skeketal tissue in man. Biol Chem Hoppe Seyler 1989; 370: 445-44.
Stebbins CL, Carretero CA, Mindroiu T, Longhurst JC. Bradykinin release from contracting skeletal muscle of the cat. J Appl Physiol 1990; 69: 1225-1230.
Taguchi T, Kishikawa H, Motoshima H, et al. Involvement of bradykinin in acute exercise-induced increase in glucose uptake and GLUT-4 translocation in skeletal muscle studies in normal and diabetic humans and rats. Metabolism 2000; 49: 920-930.
Ekelund E. Effects of angiotensin-converting enzyme inhibition on arterial, venous and capillary functions in cat skeletal muscle in vivo. Acta Physiol Scand 1996; 158: 29-37.
Rabito SF, Minshall RD, Nakamura F, Wang L-X. Bradykinin B2 receptors on skeletal muscle are coupled to inositol 1,4,5-triphosphate formation. Diabetes 1996; 45(Suppl. 1): S29-S33.
Isami S, Kishikawa H, Araki E, et al. Bradykinin enhances GLUT4 translocation through the increase of insulin receptor tyrosine kinase in primary adipocytes: evidence that bradykinin stimulates the insulin signaling pathway. Diabetologia 1996; 39: 412-420.
Rett K, Wicklmayr M, Dietze GJ, Häring HU. Insulin-induced glucose transporter (GLUT1 and GLUT4) translocation in cardiac muscle tissue is mimicked by bradykinin. Diabetes 1996; 45(Suppl. 1): S66-S69.
Kishi K, Muromoto N, Nakaya Y, et al. Bradykinin directly triggers GLUT4 translocation via an insulin-independent pathway. Diabetes 1998; 47: 550-558.
Carvalho C, Thirone A, Gontijo J, Velloso L, Saad M. Effect of captopril, losartan, and bradykinin on early steps of insulin action. Diabetes 1997; 46: 1950-1957.
Motoshima H, Araki E, Nishiyama T, et al. Bradykinin enhances insulin receptor tyrosine kinase in 32D cells reconstituted with bradykinin and insulin signaling pathway. Diabetes Res Clin Pract 2000; 48: 155-170.
Kudoh A, Dietze GJ, Rabito SF. Insulin enhances the bradykinin response in L8 rat skeletal myoblasts. Diabetes 2000; 49: 190-194.
Kudoh A, Kudoh E, Katagai H, Takazawa T. insulin potentiates bradykinin-induced inositol 1,4,5-triphosphate in neonatal rat cardiomyocytes. J Cardiovasc Pharmacol 2002; 39: 621-627.
Shiuchi T, Cui T-X, Wu L, et al. ACE inhibitor improves insulin resistance in diabetic mouse via bradykinin and NO. Hypertension 2002; 40: 329-334.
Henriksen EJ, Jacob S, Kinnick TR, Youngblood EB, Schmit MB, Dietze GJ. ACE inhibition and glucose transport in insulin-resistant muscle: role of bradykinin and nitric oxide. Am J Physiol 1999; 277: R332-R336.
Rett K, Maerker E, Renn W, van Gilst W, Haering H-U. Perfusion-independent effect of bradykinin and fosinoprilate on glucose transport in Langendorff rat hearts. Am J Cardiol 1997; 80: 143A-147A.
Depre C, Gaussin V, Ponchaut S, Fischer Y, Vanoverschelde J-L, Hue L. Inhibition of myocardial glucose uptake by cGMP. Am J Physiol 1998; 274: H1443-1449.
Tada H, Thompson CI, Recchia FA, et al. Myocardial glucose uptake is regulated by nitric oxide via endothelial nitric oxide synthase in Langendorff mouse heart. Circ Res 2000; 86: 270-274.
Shankar RR, Wu Y, Shen H-q, Zhu J-S, Baron AD. Mice with gene disruption of both endothelial and neuronal nitric oxide synthase exhibit insulin resistance. Diabetes 2000; 49: 684-687.
Linz W, Wiemer G, Schölkens BA. Beneficial effects of bradykinin on myocardial energy metabolism and infarct size. Am J Cardiol 1997; 80: 118A-123A.
Lagneux C, Adam A, Lamontagne D. A study of the mediators involved in the protection induced by exogenous kinins in the isolated rat heart. Int immunopharmacol 2003; 3: 1511-1518.
Rothschild AM, Boden G, Colman RW. Kininogen changes in human plasma following a test meal or insulin administration. Am J Physiol 1996; 270: H1071-H1077.
Anderson EA, Hoffman RP, Balon TW, Sinkey CA, Mark AI. Hyperinsulinemia produces both sympathetic neural activation and vasodilatation in normal humans. J Clin Invest 1991; 87: 2246-22S2.
Rothschild AM, Gomes ELT, Fortunato IC. Bradykinin release from high molecular weight kininogen and increase in plasma kallikrein-like activity following sensory stimulation by food in the rat. Naunyn-Schmiedeberg's Arch Pharmacol 1998; 358: 483-488.
Frey EK, Kraut H, Werle E. Uber die blutzuckersenkende wirkung des kallikreins. Klins Wochenschr 1932; 11: 846-851.
Yang C, Hsu WH. Stimulatory effect of bradykinin on insulin release from the perfused rat pancreas. Am J Physiol 1995; 268: E1027-E1030.
Saito Y, Kato M, Kubohara Y, Kobayashi I, Tatemoto K. Bradykinin increases intracellular free Ca2+ concentration and promotes insulin secretion in the clonal β cell line, HIT-T15. Biochem Biophys Res Com 1996; 221: 577-580.
Moura S. Bradykinin enhances membrane electrical activity of pancreas beta cells in the presence of low glucose concentrations. Braz J Med Biol Res 2000; 33: 1089-1092.
Yang C, Hsu WH. Glucose-dependency of bradykinin-induced insulin secretion from the perfused rat pancreas. Regul Pept 1997; 71: 23-28.
Yang C, Chao J, Hsu WH. The effect of bradykinin on secretion of insulin, glucagon, and somatostatin from the perfused rat pancreas. Metabolism 1997; 46: 1113-1115.
Abu-Basha EA, Makowski JP, Yibchok-anun S, Hsu WH. Stimulatory effect of bradykinin (BK) on glucagon secretion from the perfused rat pancreas: involvement of BK2 receptors. Metabolism 2000; 49: 1370-1373.
Yang CY, Chen T-H, Hsu WH. Mechanism of bradykinin-induced insulin secretion in clonal beta cell line RINm5F. J Pharmacol Exp Ther 1997; 282: 1247-1252.
Mikrut V, Paluszak J, Kozlik J, Sosnowski P, Krauss H, Grzeskowiak E. The effect of bradykinin on the oxidative state of rats with an hyperglycaemia. Diabetes Res Clin Pract 2001; 51: 79-85.
Damas J, Hallet C, Lefebvre PJ. Changes in blood glucose and plasma insulin levels induced by bradykinin in anaesthetized rats. Br J Pharmacol 2001; 134: 1312-1318.
Lecomte J, Troquet J, Dresse A. Stimulation médullosurrénalienne par la bradykinine. Arch Int Physiol Biochim 1961; 69: 89-91.
Feldberg W, Lewis GP. The action of peptides on the adrenal medulla. Release of adrenaline by bradykinin and angiotensin. J. Physiol 1964; 171: 98-108.
Staszewska-Barczak J, Vane JR. The release of catecholamines from the adrenal-medulla by peptides. Br J Pharmacol 1967; 30: 655-667.
Federspil G, Vettor R, De Palo E, Padovan D, Sicolo N, Scandellari C. Plasma kallikrein activity in human diabetes mellitus. Metabolism 1983; 32: 540-542.
Rothschild AM, Reis ML, Melo VL, Foss MC, Gallo L. Increased kininogen levels observed in plasma of diabetic patients are corrected by the administration of insulin. Horm Metab Res 1999; 31: 326-328.
Rothschild AM, Melo VL, Reis ML, Foss MC, Gallo L. Kininogen and prekallikrein increases in the blood of streptozotocin-diabetic rats are normalized by insulin in vivo and in vitro. Naunyn-Schmiedeberg's Arch Pharmacol 1999; 360: 217-220.
Jaffa AA, Miller DH, Bailey GS, Chao J, Margolius HS, Mayfield RK. Abnormal regulation of renal kallikrein in experimental diabetes. Effects of insulin on prokallikrein synthesis and activation. J Clin Invest 1987; 80: 1651-1659.
Jaffa AA, Miller DH, Margolius HS, Mayfield RK. The effects of diabetes and insulin on colonic tissue kallikrein. Adv Exp Med Biol 1989; 247B: 669-673.
Tschöpe C, Walther T, Yu M, et al. Myocardial expression of rat bradykinin receptors and two tissue kallikrein genes in experimental diabetes. Immunopharmacology 1999; 44: 35-42.
Tschöpe C, Reinecke A, Seidl U, et al. Functional, biochemical, and molecular investigations of renal kallikrein-kinin system in diabetic rats. Am J Physiol 1999; 277: H2333-H2340.
Christopher J, Velarde V, Douillet C, Mayfield RK, Jaffa AA. The influence of diabetes on the expression of glomerular and vascular kinin receptors. Diabetes 2000; 49: A77.
Christopher J, Velarde V, Zhang D, Mayfield D, Mayfield RK, Jaffa AA. Regulation of B2-kinin receptors by glucose in vascular smooth muscle cells. Am J Physiol 2001; 280: H1537-H1546.
Cloutier F, Couture R. Pharmacological characterization of the cardiovascular responses elicited by kinin B1 and B2 receptor agonists in the spinal cord of streptozotocin-diabetic rats. Br J Pharmacol 2000; 130: 375-385.
Pheng LH, Nguyen-Le XK, Nsa Allogho S, Gobeil F, Regoli D. Kinin receptors in the diabetic mouse. Can J Physiol Pharmacol 1997; 75: 609-611.
Vianna RMJ, Ongali B, Regoli D, Calixto JB, Couture R. Upregulation of kinin B1 receptor in the lung of streptozotocin-diabetic rat: autoradiographic and functional evidence. Br J Pharmacol 2003; 138: 13-22.
Kiff RJ, Gardiner SM, Compton AM, Bennett T. Selective impairment of hindquarters vasodilator responses to bradykinin in conscious Wistar rats with streptozotocin-induced diabetes mellitus. Br J Pharmacol 1991; 103: 1357-1362.
Pieper GM. Review of alterations in endothelial nitric oxide production in diabetes protective role of arginine on endothelial dysfunction. Hypertension 1998; 31: 1047-1060.
Brodsky SV, Morrishow AM, Dharia N, Gross SS, Goligorsky MS. Glucose scavenging of nitric oxide. Am J Physiol 2001; 280: F480-F486.
Arbin V, Claperon N, Fournié-Zaluski M-C, Roques BP, Peyroux J. Effects of combined neutral endopeptidase 24-11 and angiotensin converting enzyme inhibition on femoral vascular conductance in streptozotocin-induced diabetic rats. Br J Pharmacol 2000; 130: 1297-1304.
Zuccollo A, Navarro M, Catanzaro O. Effects of B1 and B2 kinin receptor antagonists in diabetic mice. Can J Physiol Pharmacol 1996; 74: 586-589.
Zuccollo A, Frontera M, Cueva F, Navarro M, Catanzaro OL. Effects of aprotinin on the kallikrein-kinin system in type I diabetes (insulitis). Immunopharmacology 1997; 37: 251-256.
Zuccollo A, Navarro M, Frontera M, Cueva F, Carattino M, Catanzaro OL. The involvement of kallikrein-kinin system in diabetes type I (insulitis). Immunopharmacology 1999; 45: 69-74.
Campos MM, Cabrini DA, Cardozo AH, Rae GA, Toro JH, Calixto JB. Changes in paw oedema triggered via bradykinin B(1) and B(2) preceptors in streptozotocin-diabetic rats. Eur J Pharmacol 2001; 416: 169-177.
Simard B, Gabra BH, Sirois P. Inhibitory effect of a novel bradykinin B1 receptor antagonist R-954, on enhanced vascular permeability in type 1 diabetic mice. Can J Physiol Pharmacol 2002; 80: 1203-1207.
Gabra BH, Sirois P. Role of bradykinin B(1) receptors in diabetes-induced hyperalgesia in streptozotocin-treated mice. Eur J Pharmacol 2002; 457: 115-124.
Gabra BH, Sirois P. Kinin B1 receptor antagonists inhibit diabetes induced hyperalgesia in mice. Neuropeptides 2003; 37: 36-44.
Yusuf S, Gerstein H, Hoogwerf B, et al. Ramipril and the development of diabetes. JAMA 2001; 286: 1882-1885.
Mc Carty MF. ACE inhibition may decrease diabetes risk by boosting the impact of bradykinin on adipocytes. Med Hypotheses 2003; 60: 779-783.
Mogensen CE. Microalbuminurie, blood pressure and diabetic renal disease: origin and development of ideas. Diabetologia 1999; 42: 263-285.
Vallance P, Calver J, Collier J. The vascular endothelium-in diabetes and hypertension. J Hypertens 1992; 10(Suppl 1): S25-S29.
Mage M, Pecher C. Neau E, et al. Induction of B1 receptors in streptozotocin diabetic rats: possible involvement in the control of hyperglycemia-induced glomerular Erk 1 and 2 phosphorylation. Can J Physiol Pharmacol 2002; 80: 328-333.
Alric C, Pecher C, Cellier E, et al. Inhibition of IGF-I-induced Erk 1 and 2 activation and mitogenesis in mesangial cells by bradykinin. Kidney Int 2002; 62: 412-421.
Cellier E, Mage M, Duchene J, et al. Bradykinin reduces growth factor-induced glomerular ERK1/2 phosphorylation. Am J Physiol 2003; 284: F282-F292.
Tschöpe C, Seidl U, Reinecke A, et al. Kinins are involved in the antiproteinuric effect of angiotensin converting enzyme inhibition in experimental diabetic nephropathy. Int Immunopharmacol 2003; 3: 335-344.
Jaffa AA, Durazo-Arvizu R, Zheng D, et al. Plasma prekallikrein. A risk marker for hypertension and nephropathy in type 1 diabetes. Diabetes 2003; 52: 1215-1221.
Maltais I, Bachvarova M, Maheux P, Perron P, Marceau F, Bachvarov D. Bradykinin B2 receptor gene polymorphism is associated with altered urinary albumin/creatinine values in diabetic patients. Can J Physiol Pharmacol 2002; 80: 323-327.
Zychma MJ, Gumprecht J, Trautsolt W, Szydlowska I, Grzeszczak W. Polymorphic genes for kinins receptors, nephropathy and blood pressure in type 2 diabetic patients. Am J Nephrol 2003; 23: 112-116.