gas path analysis; frequency domain; least-squares
Résumé :
[en] Most of the techniques developed to date for module performance analysis rely on steady-state measurements from a single operating point to evaluate the level of deterioration of an engine.
One of the major difficulties associated with this estimation problem comes from its underdetermined nature. It results from the fact that the number of health parameters exceeds the number of available sensors. Among the panel of remedies to this issue, a few authors have investigated the potential of using
data collected during a transient operation of the engine. A major outcome of these studies is an Improvement in the assessed health condition.
The present contribution proposes a framework that formalises this observation for a given class of input signals. The analysis is performed in the frequency domain, following the lines of system identification theory. More specifically, the meansquared estimation error is shown to drastically decrease when
using transient input signals. The study is conducted with an engine model representative of a commercial turbofan.
Disciplines :
Ingénierie aérospatiale Ingénierie mécanique
Auteur, co-auteur :
Borguet, Sébastien ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Turbomachines et propulsion aérospatiale
Henriksson, Mattias; Volvo Aero Corporation AB > Performance and Control Systems
Mc Kelvey, Tomas; Chalmers University of Technology > Signals and Systems
Léonard, Olivier ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Turbomachines et propulsion aérospatiale
Langue du document :
Anglais
Titre :
A study on engine health monitoring in the frequency domain
A. J. Volponi. Foundation of gas path analysis (part i and ii). In von Karman Institute Lecture Series, number 01 in Gas Turbine Condition Monitoring and Fault Diagnosis, Brussels, Belgium, 2003.
L. A. Urban. Gas path analysis applied to engine condition monitoring. In AIAA/SAE 8th Joint Propulsion Specialist Conference, number AIAA-72-1082, New-Orleans LA, USA, 1972.
D. L. Doel. An assessment of weighted-least-squares-based gas path analysis. ASME J. of Eng. for Gas Turbines and Power, 116:336-373, 1994.
P. Dewallef, K. Mathioudakis, and O. Léonard. On-line aircraft engine diagnostic using a soft-constrained Kalman filter. In ASME Turbo Expo, number GT2004-53539, Vienna, Austria, 2004.
A. Gulati, D.Taylor, and R.Singh. Multiple operating point analysis using genetic algorithm optimisation for gas turbine diagnostics. In 15th International Symposium on Air Breathing Engines, number 1139, Bangalore, India, 2001.
T. Grönstedt. Identifiability in multi-point gas turbine parameter estimation problems. In ASME Turbo Expo, number GT2002-30020, Amsterdam, Netherlands, 2002.
G. Merrington. Fault diagnosis in gas turbine engines from transient data. ASME J. of Eng. for Gas Turbines and Power, 111:237-243, 1989.
R.W. Cue and D.E. Muir. Engine performance monitoring and troubleshooting techniques for the cf-18 aircraft. ASME J. of Eng. for Gas Turbines and Power, 113(1):11-19, 1991. (Pubitemid 21722358)
R.H. Luppold, G.W. Gallops, L.J. Kerr, and J.R. Roman. Estimating in-flight engine performance variations using Kalman filter concepts. In 25th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, number AIAA-89-2584, Monterey CA, USA, 1989.
T. Grönstedt. Least squares based transient nonlinear gas path analysis. In ASME Turbo Expo, number GT2005-68717, Reno-Tahoe NV, USA, 2005.
Ph. Kamboukos and K. Mathioudakis. Turbofan engine health assessment by combining steady and transient state aerothermal data. In 7th European Conference on Turbomachinery, number 137, Athens, Greece, 2007.
S. Ogaji, Y.G. Li, S. Sampath, and R. Singh. Gas path fault diagnosis of a turbofan engine from transient data using artificial neural networks. In ASME Turbo Expo, number GT2003-38423, Atlanta GA, USA, 2003.
S. Sampath, Y.G. Li, S.O.T Ogaji, and R. Singh. Fault diagnosis of a two spool turbo-fan engine using transient data: A genetic algorithm approach. In ASME Turbo Expo, number GT2003-38300, Atlanta GA, USA, 2003.
D. Simon and D. L. Simon. Aircraft turbofan engine health estimation using constrained Kalman filtering. In ASME Turbo Expo, number GT2003-38584, Atlanta GA, USA, 2003.
S. Borguet, P. Dewallef, and O. Léonard. On-line transient engine diagnostics in a Kalman filtering framework. In ASME Turbo Expo, number GT2005-68013, Reno-Tahoe NV, USA, 2005.
N. Sugiyama. Derivation of system matrices from nonlinear dynamic simulation of jet engines. AIAA J. of Guidance, Control and Dynamics, 17(6):1320-1326, 1994.
A. J. Volponi. Enhanced self tuning on-board real-time model (eSTORM) for aircraft engine performance health tracking. CR-2008-215272, NASA, 2008.
L. Ljung. System Identification, Theory for the User (2nd edition). Prentice Hall Information and System Sciences Series, London, 1999.
M. Henriksson, S. Borguet, O. Léonard, and T. Grönstedt. On inverse problems in turbine engine parameter estimation. In ASME Turbo Expo, number GT2007-27756, Montréal QC, Canada, 2007.
C. Evans, A. Borrell, and D. Rees. Testing and modeling gas turbines using multisine signals and frequency-domain techniques. ASME J. of Eng. for Gas Turbines and Power, 121:451-457, 1999.
C. Evans, P.J. Fleming, D.C. Hill, J.P. Norton, I. Pratt, D. Rees, and K. Rodriguez-Vazquez. Application of syste identification techniques to aircraft gas turbine engines. Control Engineering Practice, 9:135-148, 2001. (Pubitemid 32281765)
C. R. Rao. Linear Statistical Inference and Its Applications. John Wiley & Sons, New-York, 1973.
C.R. Rojas, J.S. Welsh, G.C. Goodwin, and A. Feuer. Robust optimal experiment design for system identification. Automatica, 43(6):993-1008, 2007. (Pubitemid 46653813)
A. Stamatis, K. Mathioudakis, J. Ruiz, and B. Curnock. Real-time engine model implementation for adaptive control and performance monitoring of large civil turbofans. In ASME Turbo Expo, number 2001-GT-0362, New-Orleans LA, USA, 2001.
U. Forssell and L. Ljung. Closed-loop identification revisited. Automatica, 35(7):1215-1241, 1999.
L. Reberga, D. Henrion, J. Bernussou, and F. Vary. LPV modelling of a turbofan engine. In 16th IFAC world congress on automatic control, volume 16-1, Prague, Czech Republic, 2005.