Paper published in a book (Scientific congresses and symposiums)
A Machine Learning Approach to Improve Congestion Control over Wireless Computer Networks
Geurts, Pierre; El Khayat, Ibtissam; Leduc, Guy
2004
Peer reviewed
 

Files


Full Text
PG-ICDM2004.pdf
Author postprint (163.3 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Machine Learning; Congestion control; Wireless Networks
Abstract :
[en] In this paper, we present the application of machine learning techniques to the improvement of the congestion control of TCP in wired/wireless networks. TCP is suboptimal in hybrid wired/wireless networks because it reacts in the same way to losses due to congestion and losses due to link errors. We thus propose to use machine learning techniques to build automatically a loss classifier from a database obtained by simulations of random network topologies. Several machine learning algorithms are compared for this task and the best method for this application turns out to be decision tree boosting. It outperforms ad hoc classifiers proposed in the networking literature.
Disciplines :
Computer science
Author, co-author :
Geurts, Pierre  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
El Khayat, Ibtissam;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Réseaux informatiques
Leduc, Guy ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Réseaux informatiques
Language :
English
Title :
A Machine Learning Approach to Improve Congestion Control over Wireless Computer Networks
Publication date :
November 2004
Event name :
ICDM 2004
Event place :
Brighton, United Kingdom
Event date :
1-4 Nov. 2004
Audience :
International
Publisher :
IEEE, United States
Pages :
383-386
Peer reviewed :
Peer reviewed
Name of the research project :
PAI MOTION
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 12 January 2009

Statistics


Number of views
133 (5 by ULiège)
Number of downloads
969 (1 by ULiège)

Scopus citations®
 
53
Scopus citations®
without self-citations
51
OpenCitations
 
30
OpenAlex citations
 
64

Bibliography


Similar publications



Contact ORBi