[en] We compare modeled oceanic carbon uptake in response to pulse CO2 emissions using a suite of global ocean models and Earth system models. In response to a CO2 pulse emission of 590 Pg C (corresponding to an instantaneous doubling of atmospheric CO2 from 278 to 556 ppm), the fraction of CO2 emitted that is absorbed by the ocean is: 37 +/- 8\%, 56 +/- 10\%, and 81 +/- 4 (model mean +/- 2 sigma) in year 30, 100, and 1000 after the emission pulse, respectively. Modeled oceanic uptake of pulse CO2 on timescales from decades to about a century is strongly correlated with simulated present-day uptake of chlorofluorocarbons (CFCs) and CO2 across all models, while the amount of pulse CO2 absorbed by the ocean from a century to a millennium is strongly correlated with modeled radiocarbon in the deep Southern and Pacific Ocean. However, restricting the analysis to models that are capable of reproducing observations within uncertainty, the correlation is generally much weaker. The rates of surface-to-deep ocean transport are determined for individual models from the instantaneous doubling CO2 simulations, and they are used to calculate oceanic CO2 uptake in response to pulse CO2 emissions of different sizes pulses of 1000 and 5000 Pg C. These results are compared with simulated oceanic uptake of CO2 by a number of models simulations with the coupling of climate-ocean carbon cycle and without it. This comparison demonstrates that the impact of different ocean transport rates across models on oceanic uptake of anthropogenic CO2 is of similar magnitude as that of climate-carbon cycle feed-backs in a single model, emphasizing the important role of ocean transport in the uptake of anthropogenic CO2.
Cao, L.; Carnegie Institution (Stanford, California) > Department of Global Ecology
Eby, M.; University of Victoria - UVic > School of Earth and Ocean Sciences
Ridgwell, A.; University of Bristol > School of Geographical Sciences
Caldeira, K.; Carnegie Institution (Stanford, California) > Department of Global Ecology
Archer, D.; University of Chicago > Department of the Geophysical Sciences
Ishida, A.; Japan Agency for Marine-Earth Science and Technology > Frontier Research Center for Global Change
Joos, F.; University of Bern
Matsumoto, K.; University of Minnesota > Department of Geology and Geophysics
Mikolajewicz, U.; Max Planck Institute for Meteorology
Mouchet, Anne ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Orr, J. C.; International Atomic Energy Agency (Monaco) > Marine Environment Laboratories
Plattner, G.-K.; University of Bern
Schlitzer, R.; Alfred Wegener Institute (Bremerhaven, Germany)
Tokos, K.; University of Minnesota > Department of Geology and Geophysics
Totterdell, I.; National Oceanography Centre (Southampton, UK) / Met Office Hadley Centre (Exeter, UK)
Tschumi, T.; University of Bern
Yamanaka, Y.; Hokkaido University > Graduate School of Environmental Earth Science
Archer, D.: A data-driven model of the global calcite lysocline, Global Biogeochem. Cy., 10, 511-526,1996.
Archer, D. Kheshgi, H., and Maier-Reimer, E.: Multiple timescales for neutralization of fossil fuel CO2, Geophys. Res. Lett., 24(4), 405-408, 1997.
Archer, D.: Fate of fossil fuel CO2 in geologic time, J. Geophys. Res., 110, C09S05, doi:10.1029/2004JC002625, 2005. (Pubitemid 41594909)
Archer, D., Eby, M., Brovkin, V., et al.: Atmospheric lifetime of fossil-fuel carbon dioxide, Annu. Rev. Earth Pl. Sc., in press, 2009.
Bala, G., Caldeira, K., Mirin, A., Wickett, M., and Delire, C.: Multicentury changes to the global climate and carbon cycle: Results from a coupled climate and carbon cycle model, J. Climate, 18(21), 4531-4544, 2005.
Berner, R. A. and Kothavala, Z.: GEOCARB III: A revised model of atmospheric CO2 over phanerozoic time, Am. J. Sci, 301, 182-204, 2001.
Broecker,W. S. and Takahashi, T.: Neutralization of fossil fuel CO 2 by marine calcium carbonate, in The Fate of Fossil Fuel CO 2 in the Oceans, edited by: Andersen, N. R. and Malahoff, A., 213, Plenum Press, New York, 1978.
Broecker, W. S., Peng, T. H., Ostlund, G., and Stuiver, M.: The distribution of bomb radiocarbon in the ocean, J. Geophys. Res., 90, 6953-6970, 1985.
Broecker, W. S., Ledwell, J. R., Takahashi, T., et al.: Isotopic versus micrometeorologic ocean CO2 fluxes, J. Geophys. Res., 91, 10517-10527, 1986.
Brovkin, V., Bendtsen, J., Claussen, M., Ganopolski, A., Kubatzki, C., and Petoukhov, V.: Carbon cycle, vegetation and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model, Global Biogeochem. Cy., 16(4), 1139, doi:10.1029/2001GB001662, 2002.
Brovkin, V., Ganopolski, A., Archer, D., and Rahmstorf, S.: Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry, Paleoceanography , 22, PA4202, doi:10.1029/ 2006PA001380, 2007.
Bryan, K. and Lewis, L. J.: A water mass model of the world ocean, J. Geophys. Res., 84, 2503-2518, 1979.
Caldeira, K. and Wickett, M. E.: Anthropogenic carbon and ocean pH, Nature, 425, 365-365, 2003.
Cao, L., Caldeira, K., and Jain, A. K.: Effects of carbon dioxide and climate change on ocean acidification and carbonate mineral saturation, Geophys. Res. Lett., 34, L05607, doi:10.1029/2006GL028605, 2007. (Pubitemid 46864519)
Cao, L. and Jain, A. K.: Learning about the ocean carbon cycle from observational constraints and model simulations of multiple tracers, Clim. Change, 89, 45-66, doi:10.1007/s10584-008-9421-1, 2008.
Cao, L. and Caldeira, K.: Atmospheric CO2 stabilization and ocean acidification, Geophys. Res. Lett., 35, L19609, doi:10.1029/2008GL035072, 2008.
Chuck, A., Tyrrell, T., Totterdell, I. J., and Holligan, P. M.: The oceanic response to carbon emissions over the next century: investigations using three ocean carbon cycle models, Tellus, 57B, 70-86, 2005.
Cox, P., Betts, R., Jones, C. D., Spall, S. A., and Totterdell, I. J.: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model, Nature, 408, 184-187, 2000.
Denman, K. L., Brasseur, G., Chidthaisong, A., et al.: Coupling between changes in the climate system and biogeochemistry, in: Climate Change 2007: The physical science basis. Contributing of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007.
Doney, S. C.: Major challenges confronting marine biogeochemical modeling, Global Biogeochem. Cy., 13, 705-714, 1999.
Doney, S. C., Lindsay, K., Caldeira, K., et al.: Evaluating global ocean carbon models: The importance of realistic physics, Global Biogeochem. Cy., 18, GB3017, doi:10.1029/2003GB002150, 2004. (Pubitemid 39621747)
Dutay, J. C., Jean-Baptistea, P., Campin, J.-M., et al.: Evaluation of OCMIP-2 ocean models' deep circulation with mantle Helium- 3, J. Mar. Syst., 481(4), 15-36, doi:10.1016/j.jmarsys.2003. 05.010, 2004.
Edwards, N. R. Willmott, A. J., and Killworth, P. D.: On the role of topography and wind stress on the stability of the thermohaline circulation, J. Phys. Oceanogr., 28, 756-778, 1998.
Edwards, N. R. and Marsh, R.: Uncertainties due to transportparameter sensitivity in an efficient 3-D ocean-climate model, Clim. Dynam., 24(4), 415-433, 2005.
Friedlingstein, P., Cox, P., Betts, R., et al.: Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison, J. Climate, 19, 3337-3353, 2006.
Ganopolski, A., Rahmstorf, S., Petoukhov, V., and Claussen, M.: Simulation of modern and glacial climates with a coupled global model of intermediate complexity, Nature, 371, 323-326, 1998.
Gebbie, G., Heimbach, P., and Wunsch, C.: Strategies for nested and eddy-permitting state estimation, J. Geophys. Res., 111, C10073, doi:10.1029/2005JC003094, 2006. (Pubitemid 47386245)
Gehlen, M., Gangstø, R., Schneider, B., Bopp, L., Aumont, O., and Ethe, C.: The fate of pelagic CaCO3 production in a high CO 2 ocean: a model study, Biogeosciences, 4, 505-519, 2007, http://www.biogeosciences.net/4/505/2007/.
Gent, P. R. and McWilliams, J. C.: Isopycnal mixing in ocean circulation models, J. Phys. Oceanogr., 20, 150-155, 1990.
Goosse, H.: Modelling the large-scale behavior of the coupled ocean-sea-ice system, Ph.D. thesis, Universite Catholique de Louvain, Louvain-la-Neuve, Belgium, 231 pp., 1998.
Goosse, H. and Fichefet, T.: Importance of ice-ocean interactions for the global ocean circulation: A model study, J. Geophys. Res., 104, 23337-23355, 1999.
Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C., Mitchell, J. F. B., and Wood, R. A.: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments, Clim. Dynam., 16, 147-168, 2000.
Hargreaves, J. C., Annan, J. D., Edwards, N. R., and Marsh, R.: An efficient climate forecasting method using an intermediate complexity Earth System Model and the ensemble Kalman filter, Clim. Dynam., 23(7-8), 745-760, 2004.
Heinze, C.: Simulating oceanic CaCO3 export production in the greenhouse, Geophys. Res. Lett., 31, L16308, doi:10.1029/2004GL020613, 2004. (Pubitemid 39428485)
Intergovernmental Panel on Climatic Change (IPCC) , Third Assessment Report of Working Group III, Mitigation, edited by: Metz, B., Davidson, O., Swart, R., and Jiahua, P., 752 pp., Cambridge Univ. Press, New York, 2001.
Ito, T., and Deutsch, C.: Understanding the saturation state of argon in the thermocline: The role of air-sea gas exchange and diapycnal mixing, Global Biogeoche. Cy., 20, GB3019, doi:10.1029/2005GB002655, 2006. (Pubitemid 46761038)
Joos, F., Bruno, M., Fink, R. Stocker, T. F., Siegenthaler, U., Le Quéré, C., and Sarmiento, J. L.: An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake, Tellus, 48B, 397-417, 1996.
Joos, F. and Bruno, M.: Pulse response functions are cost-efficient tools to model the link between carbon emissions, atmospheric CO2 and global warming, Phys. Chem. Earth, 21, 471-476, 1996.
Joos, F., Plattner, G.-K., Stocker, T. F., Marchal, O., and Schmittner, A.: Global warming and marine carbon cycle feedbacks on future atmospheric CO2, Science, 284, 464-467, 1999.
Joos, F., Prentice, I. C., Sitch, S., Meyer, R., Hooss, G., Plattner, G.-K., Gerber, S., and Hasselmann, K.: Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios, Global Biogeochem. Cy., 15, 891-908, 2001.
Key, R. M., Kozyr, A., Sabine, C. L., et al.: A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP), Global Biogeochem. Cy., 18, GB4031, doi:10.1029/2004GB002247, 2004. (Pubitemid 40440592)
Kraus, E. and Turner, J.: A one-dimensional model of the seasonal thermocline: II, Tellus, 19, 98-105, 1967.
Lenton, T. M. and Britton, C.: Enhanced carbonate and silicate weathering accelerates recovery from fossil fuel CO2 perturbations, Global Biogeochem. Cy., 20, GB3009, doi:10.1029/2005GB002678, 2006. (Pubitemid 46761028)
Maier-Reimer, E. and Hasselmann, K.: Transport and storage of CO 2 in the ocean - an inorganic ocean - circulation carbon cycle model, Clim. Dynam., 2, 63-90, 1987.
Maier-Reimer, E.: Geochemical cycles in an ocean general circulation model: preindustrial tracer distributions, Global Biogeoche. Cy., 7, 645-677, 1993.
Maier-Reimer, E.: The biological pump in the greenhouse, Glob. Planet. Change, 8, 13-15, 1993.
Maier-Reimer, E., Mikolajewicz, U., and Winguth, A.: Future ocean uptake of CO2: interaction between ocean circulation and biology, Clim. Dynam., 12, 711-721, 1996.
Marchal, O., Stocker, T. F., and Joos, F.: A latitude-depth, circulation-biogeochemical ocean model for paleoclimate studies: Model development and sensitivities, Tellus, 50B, 290-316, 1998.
Matsumoto, K., Sarmiento, J. L., Key, R. M., et al.: Evaluation of ocean carbon cycle models with data-based metrics, Geophys. Res. Lett., 31, L07303, doi:10.1029/2003GL018970, 2004. (Pubitemid 38870488)
Matsumoto, K., Tokos, S., Price, A., and Cox, S. J.: First description of the Minnesota Earth System Model for Ocean biogeo- chemistry (MESMO 1.0), Geoscientific Model Development, 1, 1-15, 2008.
Meissner, K. J., Weaver, A. J., Matthews, H. D., and Cox, P. M.: The role of land-surface dynamics in glacial inception: a study with the UVic Earth System Model, Clim. Dynam., 21, 515-537, doi:10.1007/s00382-0352-2, 2003.
Mikolajewicz, U., Groger, M., Maier-Reimer, E., Schurgers, G., Vizcaino, M., and Winguth, A.: Long-term effects of anthropogenic CO2 emissions simulated with a complex earth system model, Clim. Dynam., 28, 599-631, 2007.
Montenegro, A., Brovkin, V., Eby M., Archer, D., and Weaver A. J.: Long term fate of anthropogenic carbon, Geophys. Res. Lett., 34, L19707, doi:10.1029/2007GL030905, 2007. (Pubitemid 350263031)
Mouchet, A. and Francois, L.: Sensitivity of a global ocean carbon cycle model to the circulation and to the fate of organic matter: preliminary results, Phys. Chem. Earth., 21, 511-516, 1996.
Müller, S. A, Joos, F., Edwards, N. R., and Stocker, T. F.: Water mass distribution and ventilation time scales in a cost-efficient, three-dimensional ocean model, J. Climate, 19(21), 5479-5499, doi:10.1175/JCLI3911.1, 2006.
Murnane, R. J., Sarmiento, J. L., and Le Quéré, C.: Spatial distribution of air-sea CO2 fluxes and the interhemispheric transport of carbon by the oceans, Global Biogeochem. Cy., 13, 287-305, 1999.
Najjar, R. G., Jin, X., Louanchi, F., et al.: Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: Results from Phase II of the Ocean Carboncycle Model Intercomparison Project (OCMIP-2), Global Biogeochem. Cy., 21, GB3007, doi:10.1029/2006GB002857, 2007. (Pubitemid 350201904)
Orr, J. C., Maier-Reimer, E., Mikolajewicz, U., et al.: Estimates of anthropogenic carbon uptake from four threedimensional global ocean models, Global Biogeochem. Cy., 15, 43-60, 2001.
Orr, J. C.: Global ocean storage of anthropogenic carbon, 116pp, Inst. Peirre Simon Laplace, Gid-sur-Yvette, France, 2002.
Orr, J. C., Fabry V., Aumont, O., et al.: Anthropogenic ocean acidification over the twenty first century and its impact on calcifying organisms, Nature, 437, 681-686, 2005.
Parekh, P., Joos F., andMüller, S. A.: A modeling assessment of the interplay between aeolian iron fluxes and ligands in controlling carbon dioxide fluctuations during Antarctic warm events, Paleoceanography, 23, PA4202, doi:10.1029/2007PA001531, 2008.
Plattner, G.- K., Joos, F., Stocker, T. F., and Marchal O.: Feedback mechanisms and sensitivities of ocean carbon uptake under global warming, Tellus, 53B, 564-592, 2001.
Plattner, G.-K., Knutti, R., Joos, F., et al.: Long-term climate commitments projected with climate - carbon cycle models, J. Climate, 21, 2721-2751, 2008.
Ridgwell, A., Hargreaves, J. C., Edwards, N. R., Annan, J. D., Lenton, T. M., Marsh, R., Yool, A., andWatson, A.: Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling, Biogeosciences, 4, 87-104, 2007a, http://www.biogeosciences.net/4/87/2007/.
Ridgwell, A., Zondervan, I., Hargreaves, J. C., Bijma, J., and Lenton, T. M.: Assessing the potential long-term increase of oceanic fossil fuel CO 2 uptake due to CO2-calcification feedback, Biogeosciences, 4, 481-492, 2007b, http://www.biogeosciences.net/4/481/2007/.
Ridgwell, A. and Hargreaves J. C.: Regulation of atmospheric CO 2 by deep-sea sediments in an Earth system model, Global Biogeochem. Cy., 21, GB2008, doi:10.1029/2006GB002764, 2007. (Pubitemid 47323957)
Roeckner, E., Arpe, K., Bengtsson, L., et al.: Simulation of the present-day climate with the ECHAM model: impact of the model physics and resolution, Report No. 93., Hamburg, 1992.
Royal Society: Ocean acidification due to increasing atmospheric carbon dioxide, The Royal society, London, 2005.
Sabine, C. L., Feely, R. A., Gruber, N., et al.: The Oceanic Sink for Atmospheric Carbon, Science, 305, 367-371, 2004.
Sarmiento, J. L., Orr, J. C., and Siegenthaler, U.: A perturbation simulation of CO2 uptake in an ocean general circulation model, J. Geophys. Res., 97, 3621-3645, 1992.
Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J., and Manabe, S.: Simulated response of the ocean to anthropogenic climate warming, Nature, 393, 245-249, 1998.
Schlitzer, R.: An adjoint model for the determination of the mean oceanic circulation, air-sea fluxes and mixing coefficients, Ber. zur Polarforschung 156, Alfred-Wegener-Institut, Bremerhaven, 1995.
Schlitzer, R.: Carbon export in the Southern Ocean: Results from inverse modeling and comparison with satellite-based estimates, Deep Sea Res., Part II, 49, 1623-1644, 2002.
Schmittner, A., Oschlies, A., Giraud, X., Eby, M., and Simmons, H. L.: A global model of the marine ecosystem for long-term simulations: Sensitivity to ocean mixing, buoyancy forcing, particle sinking, and dissolved organic matter cycling, Global Biogeochem. Cy., 19, GB3004, doi:10.1029/2004GB002283, 2005. (Pubitemid 41582482)
Schmittner A., Oschlies, A., Matthews, H. D., and Galbraith, E. D.: Future changes in climate, ocean circulation, ecosystems and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD, Global Biogeochem. Cy., 22, GB1013, doi:10.1029/2007GB00295, 2008.
Shaffer, G. and Sarmiento, J. L.: Biogeochemical Cycling in the Global Ocean .1. A New, Analytical Model with Continuous Vertical Resolution and High-Latitude Dynamics, J Geophy. Res., 100, 2659-2672, 1995.
Siegenthaler, U. and Oeschger, H.: Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data, Tellus, 39B, 140-154, 1987.
Siegenthaler, U. and Joos, F.: Use of a simple model for studying oceanic tracer distributions and the global carbon cycle, Tellus, 44B, 186-207, 1992.
Singarayer, J. S., Richards, D. A., Ridgwell, A., Valdes, P. J., Austin, W. E. N., and Beck, J. W.: An oceanic origin for the increase of atmospheric radiocarbon during the Younger Dryas, Geophys. Res. Lett., 35, L14707, doi:10.1029/2008GL034074, 2008.
Steinacher, M., Joos, F., Frölicher, T. L., Plattner, G.-K., and Doney, S. C.: Imminent ocean acidification projected with the NCAR global coupled carbon cycle-climate model, Biogeosciences Discuss., 5, 4353-4393, 2008, http://www.biogeosciences-discuss.net/5/4353/2008/.
Stocker, T. F., Wright, D. G., and Mysak, L. A.: A zonally averaged, coupled ocean-atmosphere model for paleoclimate studies, J. Climate, 5, 773-797, 1992.
Tschumi, T., Joos, F., and Parekh, P.: How important are Southern Hemisphere wind changes for low glacial carbon dioxide? A model study, Paleoceanography, 23, PA4208, doi:10.1029/2008PA001592, 2008.
Walker, J. C. G. and Kasting, J. F.: Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide, Palaeogeog, Palaeoclimatol., Palaeoecol., 97, 151-189, 1992.
Waugh, D.W., Hall, T. M., Mcneil, B. I., Key, R., and Matear, R. J.: Anthropogenic CO2 in the oceans estimated using transient time distributions, Tellus, 58B, 376-389, 2006.
Weaver, A. J., Eby, M.,Wiebe, E. C., et al.: The UVic Earth System Climate Model: Model description, climatology and application to past, present and future climates, Atmos-Ocean, 38, 271-301, 2001.
Willey, D. A., Fine, R. A., Sonnerup, R. E., Bullister, J. L., Smethie Jr., W. M., and Warner, M. J.: Global oceanic chlorofluorocarbon inventory, Geophys. Res. Lett., 31, L01303, doi:10.1029/2003GL018816, 2004.
Winguth A., Heimann, M., Kurz, K. D., Maier-Reimer, E., Michajewicz, U., and Segschneider, J.: ENSO related fluctuations of the marine carbon cycle, Global Biogeochem. Cy., 8, 39-65, 1994.
Wright, D. G. and Stocker, T. F.: Sensitivities of a zonally averaged global ocean circulation model, J. Geophys. Res., 97, 12707-12730, 1992.
Wright, D. G. and Stocker, T. F.: Closures used in zonally averaged ocean models, J. Phys. Oceanogr., 28, 701-804, 1998.
Yamanaka, Y. and Tajika E.: The role of the vertical fluxes of particulate organic matter and calcite in the oceanic carbon cycle: Studies using an ocean biogeochemical circulation model, Global Biogeochem. Cy., 10, 361-382, 1996.
Zeebe, R. E. and Caldeira K.: Close mass balance of long-term carbon fluxes from ice-core CO2 and ocean chemistry records, Nature Geoscience, 1, 312-315, doi:10.1038/ngeo185, 2008.
Zickfeld, K., Fyfe, J. C., Saenko, O. A., Eby, M., andWeaver, A. J.: Response of the global carbon cycle to human-induced changes in Southern Hemisphere winds, Geophys. Res. Lett., 34, L12712, doi:10.1029/2006GL028797, 2007.