Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: Results from Phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2)
[en] Results are presented of export production, dissolved organic matter (DOM) and dissolved oxygen simulated by 12 global ocean models participating in the second phase of the Ocean Carbon-cycle Model Intercomparison Project. A common, simple biogeochemical model is utilized in different coarse-resolution ocean circulation models. The model mean (+/- 1 sigma) downward flux of organic matter across 75 m depth is 17 +/- 6 Pg C yr(-1). Model means of globally averaged particle export, the fraction of total export in dissolved form, surface semilabile dissolved organic carbon (DOC), and seasonal net outgassing (SNO) of oxygen are in good agreement with observation-based estimates, but particle export and surface DOC are too high in the tropics. There is a high sensitivity of the results to circulation, as evidenced by (1) the correlation of surface DOC and export with circulation metrics, including chlorofluorocarbon inventory and deep-ocean radiocarbon, (2) very large intermodel differences in Southern Ocean export, and (3) greater export production, fraction of export as DOM, and SNO in models with explicit mixed layer physics. However, deep-ocean oxygen, which varies widely among the models, is poorly correlated with other model indices. Cross-model means of several biogeochemical metrics show better agreement with observation-based estimates when restricted to those models that best simulate deep-ocean radiocarbon. Overall, the results emphasize the importance of physical processes in marine biogeochemical modeling and suggest that the development of circulation models can be accelerated by evaluating them with marine biogeochemical metrics.
Mouchet, Anne ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: Results from Phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2)
Publication date :
2007
Journal title :
Global Biogeochemical Cycles
ISSN :
0886-6236
eISSN :
1944-9224
Publisher :
Amer Geophysical Union, Washington, United States - Washington
Abell, J., S. Emerson, and P. Renaud (2000), Distributions of TOP, TON and TOC in the North Pacific subtropical gyre: Implications for nutrient supply in the surface ocean and remineralization in the upper thermocline, J. Mar. Res., 58, 203-222.
Anderson, L. A., and J. L. Sarmiento (1994), Redfield ratios of remineralization determined by nutrient data analysis, Global Biogeochem. Cycles, 8, 65-80.
Anderson, L. A., and J. L. Sarmiento (1995), Global ocean phosphate and oxygen simulations, Global Biogeochem. Cycles, 9, 621-636.
Anderson, T. R., and P. J. L. B. Williams (1999), A one-dimensional model of dissolved organic carbon cycling in the water column incorporating combined biological-photochemical decomposition, Global Biogeochem. Cycles, 13, 337-349.
Archer, D., E. T. Peltzer, and D. L. Kirchman (1997), A timescale for dissolved organic carbon production in equatorial Pacific surface water, Global Biogeochem. Cycles, 11, 435-452.
Armstrong, R. A., C. Lee, J. I. Hedges, S. Honjo, and S. G. Wakeham (2002), A new, mechanistic model for organic carbon fluxes in the ocean, based on the quantitative association of POC with ballast minerals, Deep Sea Res., Part II, 49, 219-236.
Aumont, O., J. C. Orr, P. Monfray, G. Madec, and E. Maier-Reimer (1999), Nutrient trapping in the equatorial Pacific: The ocean circulation solution, Global Biogeochem. Cycles, 13, 351-369.
Bacastow, R., and E. Maier-Reimer (1990), Ocean-circulation model of the carbon cycle, Clim. Dyn., 4, 95-125.
Behrenfeld, M. J., and P. G. Falkowski (1997), Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol. Oceanogr., 42, 1-20.
Bender, M., T. Ellis, P. Tans, R. Francey, and D. Lowe (1996), Variability in the O2/N2 ratio of southern hemisphere air: Implications for the carbon cycle, Global Biogeochem. Cycles, 10, 9-21.
Berelson, W. M. (2001), The flux of particulate organic carbon into the ocean interior: A comparison of four US JGOFS regional studies, Oceanography, 14, 59-67.
Berelson, W. M., B. Balch, R. Najjar, R. A. Feely, C. Sabine, and K. Lee (2007), Relating estimates Of CaCO3 production, export, and dissolution in the water column to measurements of CaCO3 rain into sediment traps and dissolution on the sea floor: A revised global carbonate budget, Global Biogeochem. Cycles, 21, GB1024, doi:10.1029/2006GB002803.
Borsheim, K. Y., and S. M. Myklestad (1997), Dynamics of DOC in the Norwegian Sea inferred from monthly profiles collected during 3 years at 66°N, 2°E, Deep Sea Res., Part I, 33, 593-601.
Broecker, W. S., and T. Takahashi (1985), Sources and flow patterns of deep-ocean waters as deduced from potential temperature, salinity and initial phosphate concentration, J. Geophys. Res., 90, 6925-6939.
Broecker, W. S., J. R. Ledwell, T. Takahashi, R. Weiss, L. Memery, T.-H. Peng, B. Jahne, and K. O. Munnich (1986), Isotopic versus micrometeorological CO2 fluxes: A serious conflict, J. Geophys. Res., 91, 10,517-10,527.
Carlson, C. A., H. W. Ducklow, and A. F. Michaels (1994), Annual flux of dissolved organic carbon from the euphoric zone in the northwestern Sargasso Sea, Nature, 371, 405-408.
Carr, M. E. (2002), Estimation of potential productivity in Eastern Boundary Currents using remote sensing, Deep Sea Res., Part II, 49, 59-80.
Chavez, F., and J. R. Toggweiler (1995), Physical estimates of global new production: The upwelling contribution, in Upwelling in the Ocean: Modern Processes and Ancient Records, edited by C. P. Summerhayes et al., pp. 313-320, John Wiley, Hoboken, N. J.
Christian, J., and T. Anderson (2002), Modeling DOM biogeochemistry, in Biogeochemistry of Marine Dissolved Organic Matter, edited by D. A. Hansell and C. A. Carlson, pp. 717-755, Academic Press, San Diego, Calif.
Conkright, M. E., S. Levitus, and T. P. Boyer (1994), World Ocean Atlas 1994, vol. 1, Nutrients, NOAA Atlas NESDIS, vol. 1, 162 pp., NOAA, Silver Spring, Md.
Conkright, M. E., H. E. Garcia, T. D. O'Brien, R. A. Locarnini, T. P. Boyer, C. Stephens, and J. I. Antonov (2002), World Ocean Atlas 2001, vol. 4, Nutrients, NOAA Atlas NESDIS, vol. 52, 392 pp., NOAA, Silver Spring, Md.
de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone (2004), Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology, J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.
Doney, S. C. (1999), Major challenges confronting marine biogeochemical modeling, Global Biogeochem. Cycles, 13, 705-714.
Doney, S. C., K. Lindsay, and J. K. Moore (2003), Global ocean carbon cycle modeling, in Ocean Biogeochemistry, edited by M. J. R. Fasham, pp. 217-238, Springer, New York.
Doney, S. C., et al. (2004), Evaluating global ocean carbon models: The importance of realistic physics, Global Biogeochem. Cycles, 18, GB3017, doi:10.1029/2003GB002150.
Doval, M., and D. A. Hansell (2000), Organic carbon and apparent oxygen utilization in the Western South Pacific and central Indian Oceans, Mar. Chem., 68, 249-264.
Duffy, P. B., K. Caldeira, J. Selvaggi, and M. I. Hoffert (1997), Effects of subgrid-scale mixing parametrisations on simulated distributions of natural 14C, temperature and salinity in a three-dimensional ocean general circulation model, J. Phys. Oceanogr., 27, 498-523.
Dugdale, R. C., and J. J. Goering (1967), Uptake of new and regenerated forms of nitrogen in primary productivity, Limnol. Oceanogr., 12, 196-206.
Dunne, J. P., R. A. Armstrong, A. Gnanadesikan, and J. L. Sarmiento (2005), Empirical and mechanistic models for the particle export ratio, Global Biogeochem. Cycles, 19, GB4026, doi:10.1029/2004GB002390.
Dutay, J.-C., et al. (2002), Evaluation of ocean model ventilation with CFC-11: Comparison of 13 global ocean models, Ocean Modell., 4, 89-120.
Dutay, J.-C., et al. (2004), Evaluation of OCMIP-2 ocean models' deep circulation with mantle helium-3, J. Mar. Syst., 48(1-4), 15-36, doi:10.1016/j.jmarsys.2003.05.010.
Emerson, S. (1987), Seasonal oxygen cycles and biological new production in surface waters of the subarctic Pacific Ocean, J. Geophys. Res., 92, 6535-6544.
Eppley, R. W., and B. J. Peterson (1979), Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282, 677-680.
Esbensen, S. K., and Y. Kushnir (1981), The heat budget of the global ocean: An atlas based on estimates from surface marine observations, Rep. 29, Clim. Res. Inst., Oreg. State Univ., Corvallis.
Feely, R. A., C. L. Sabine, K. Lee, W. Berelson, J. Kleypas, V. J. Fabry, and F. J. Millero (2004), Impact of anthropogenic CO2 on the CaCO3 system in the oceans, Science, 305, 362-366.
Follows, M. J., T. Ito, and J. Marotzke (2002), The wind-driven, subtropical gyres and the solubility pump of CO2, Global Biogeochem. Cycles, 16(4), 1113, doi:10.1029/2001GB001786.
Francois, R., S. Honjo, R. Krishfield, and S. Manganini (2002), Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean, Global Biogeochem. Cycles, 16(4), 1087, doi:10.1029/ 2001GB001722.
Friis, K., R. G. Najjar, M. J. Follows, and S. Dutkiewicz (2006), Possible overestimation of shallow-depth calcium carbonate dissolution in the ocean, Global Biogeochem. Cycles, 20, GB4019, doi:10.1029/ 2006GB002727.
Garcia, H. E., and L. I. Gordon (1992), Oxygen solubility in seawater: Better fitting equations, Limnol. Oceanogr., 37, 1307-1312.
Garcia, H. E., and R. F. Keeling (2001), On the global oxygen anomaly and air-sea flux, J. Geophys. Res., 106, 31,155-31,166.
Gent, P. R., and J. C. McWilliams (1990), Isopycnal mixing in ocean circulation models, J. Phys. Oceanogr., 20, 150-155.
Gnanadesikan, A., R. D. Slater, N. Gruber, and J. L. Sarmiento (2002), Oceanic vertical exchange and new production: A comparison between models and observations, Deep Sea Res., Part II, 49, 363-401.
Gnanadesikan, A., J. P. Dunne, R. M. Key, K. Matsumoto, J. L. Sarmiento, R. D. Slater, and P. S. Swathi (2004), Oceanic ventilation and biogeochemical cycling: Understanding the physical mechanisms that produce realistic distributions of tracers and productivity, Global Biogeochem. Cycles, 18, GB4010, doi:10.1029/2003GB002097.
Goosse, H., and T. Fichefet (1999), Importance of ice-ocean interactions for the global ocean circulation: A model study, J. Geophys. Res., 104, 23,337-23,355.
Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood (2000), The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments, Clim. Dyn., 16, 147-168.
Guo, L., C. H. Coleman Jr., and P. H. Santschi (1994), The distribution of colloidal and dissolved organic carbon in the Gulf of Mexico, Mar. Chem., 45, 105-119.
Hansell, D. A. (2002), DOC in the global ocean carbon cycle, in Biogeochemistry of Marine Dissolved Organic Matter, edited by D. A. Hansell and C. A. Carlson, pp. 685-715, Academic Press, San Diego, Calif.
Hansell, D. A., and C. A. Carlson (1998a), Deep ocean gradients in the concentration of dissolved organic carbon, Nature, 395, 263-266.
Hansell, D. A., and C. A. Carlson (1998b), Net community production of dissolved organic carbon, Global Biogeochem. Cycles, 12, 443-453.
Hansell, D. A., and C. A. Carlson (2001), Marine dissolved organic matter and the carbon cycle, Oceanography, 14, 59-67.
Hansell, D. A., N. R. Bates, and K. Gunderson (1995), Mineralization of dissolved organic carbon in the Sargasso Sea, Mar. Chem., 51, 201-212.
Hansell, D. A., C. A. Carlson, N. Bates, and A. Poisson (1997), Horizontal and vertical removal of organic carbon in the equatorial Pacific Ocean: A mass balance assessment, Deep Sea Res., Part II, 44, 2115-2130.
Hood, R. R., et al. (2006), Pelagic functional group modeling: Progress, challenges and prospects, Deep Sea Res., Part II, 53, 459-512.
Ito, T., M. J. Follows, and E. A. Boyle (2004), Is AOU a good measure of respiration in the oceans?, Geophys. Res. Lett., 31, L17305, doi:10.1029/2004GL020900.
Jenkins, W. J. (1987), 3H and 3He in the Beta triangle observations of gyre ventilation and oxygen utilization rates, J. Phys. Oceanogr., 17, 763-783.
Jenkins, W. J., and J. C. Goldman (1985), Seasonal oxygen cycling and primary production in the Sargasso Sea, J. Mar. Res., 43, 465-491.
Jin, X., R. G. Najjar, F. Louanchi, and S. C. Doney (2007), A modeling study of the seasonal oxygen budget of the global ocean, J. Geophys. Res., 112, C05017, doi:10.1029/2006JC003731.
Karl, D. M. and K. M. Björkman (2002), Dynamics of DOP, in Biogeochemistry of Marine Dissolved Organic Matter, edited by D. A. Hansell and C. A. Carlson, pp. 249-366, Academic Press, San Diego, Calif.
Keeling, R. F., and S. R. Shertz (1992), Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle, Nature, 358, 723-727.
Keeling, R. F., B. B. Stephens, R. G. Najjar, S. C. Doney, D. Archer, and M. Heimann (1998), Seasonal variations in the atmospheric O2/N2 ratio in relation to the air-sea exchange of O2, Global Biogeochem. Cycles, 12, 141-164.
Key, R. M., A. Kozyr, C. L. Sabine, K. Lee, R. Wanninkhof, J. L. Bullister, R. A. Feely, F. J. Millero, C. Mordy, and T.-H. Peng (2004), A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP), Global Biogeochem. Cycles, 18, GB4031, doi:10.1029/2004GB002247.
Kraus, E., and J. Turner (1967), A one-dimensional model of the seasonal thermocline: II, Tellus, 19, 98-105.
Kwon, E. Y., and F. Primeau (2006), Optimization and sensitivity study of a biogeochemistry ocean model using an implicit solver and in situ phosphate data, Global Biogeochem. Cycles, 20, GB4009, doi:10.1029/2005GB002631.
Large, W. G., G. Danabasoglu, S. C. Doney, and J. C. McWilliams (1997), Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology, J. Phys. Oceanogr., 27, 2418-2447.
Laws, E. A., P. G. Falkowski, W. O. Smith, H. Ducklow, and J. J. McCarthy (2000), Temperature effects on export production in the open ocean, Global Biogeochem. Cycles, 14, 1231-1246.
Lee, K. (2001), Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon, Limnol. Oceanogr., 46, 1287-1297.
Levitus, S., and T. P. Boyer (1994), World Ocean Atlas 1994, vol. 2, Oxygen, NOAA Atlas NESDIS, vol. 2, NOAA, Silver Spring, Md.
Levitus, S., J. L. Reid, M. E. Conkright, R. G. Najjar, and A. Mantyla (1993), Distribution of phosphate, nitrate and silicate in the world oceans, Prog. Oceanogr., 31, 245-273.
Locarnini, R. A., T. D. O'Brien, H. E. Garcia, J. I. Antonov, T. P. Boyer, M. E. Conkright, and C. Stephens (2002), World Ocean Atlas 2001 [CD-ROM], vol. 3, Oxygen, NOAA Atlas NESDIS, vol. 51, 286 pp., NOAA, Silver Spring, Md.
Louanchi, F., and R. G. Najjar (2000), A global monthly mean climatology of phosphate, nitrate and silicate in the upper ocean: Spring-summer production and shallow remineralization, Global Biogeochem. Cycles, 14, 957-977.
Loukos, H., B. Frost, D. E. Harrison, and J. W. Murray (1997), An ecosystem model with iron limitation of primary production in the equatorial Pacific at 140°W, Deep Sea Res., Part II, 2221-2249.
Madec, G., P. Delecluse, M. Imbard, and C. Levy (1998), OPA8.1 ocean general circulation model reference manual, Notes du pole de modelisation IPSL 11, Inst. Pierre Simon LaPlace, Paris.
Maier-Reimer, E. (1993), Geochemical cycles in an OGCM: 1. Tracer distributions, Global Biogeochem. Cycles, 7, 645-677.
Marchal, O., T. F. Stocker, and F. Joos (1998), A latitude-depth, circulation-biogeochemical ocean model for paleoclimate studies: Model development and sensitivities, Tellus, Ser. B, 50, 290-316.
Marra, J., C. Ho, and C. Trees (2003), An alternative algorithm for the calculation of primary productivity from remote sensing data, Tech. Rep. LDEO-2003-1, Lamont-Doherty Earth Obs., Palisades, N. Y.
Martin, J. H., G. A. Knauer, D. M. Karl, and W. W. Broenkow (1987), VERTEX: Carbon cycling in the northeast Pacific, Deep Sea Res., 34, 267-285.
Matear, R. J., and A. C. Hirst (1999), Climate change feedback on the future oceanic CO2 uptake, Tellus, Ser. B, 51, 722-733.
Matsumoto, K., et al. (2004), Evaluation of ocean carbon cycle models with data-based metrics, Geophys. Res. Lett., 31, L07303, doi:10.1029/2003GL018970.
Michaels, A. F., et al. (1994), Seasonal patterns of ocean biogeochemistry at the U.S. JGOFS Bermuda Atlantic Time-series Study site, Deep Sea Res., Part 1, 41, 1013-1038.
Middelburg, J. J., K. Soetaert, P. M. J. Herman, and C. H. R. Heip (1996), Denitrification in marine sediments: A model study, Global Biogeochem. Cycles, 10, 661-674.
Mikaloff Fletcher, S. E., et al. (2006), Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean, Global Biogeochem. Cycles, 20, GB2002, doi:10.1029/2005GB002530.
Mikaloff Fletcher, S. E., et al. (2007), Inverse estimates of the oceanic sources and sinks of natural CO2 and the implied oceanic transport, Global Biogeochem. Cycles, 21, GB1010, doi:10.1029/2006GB002751.
Müller, S. A., F. Joos, N. R. Edwards, and T. F. Stocker (2006), Water mass distribution and ventilation time scales in a cost-efficient, 3-dimensional ocean model, J Clim., 19, 5479-5499.
Murray, J. W., J. Young, J. Newton, J. Dunne, T. Chapin, B. Paul, and J. J. McCarthy (1996), Export flux of particulate organic carbon from the central equatorial Pacific determined using a combined drifting trap 234 Th approach, Deep Sea Res., Part II, 43, 1095-1132.
Najjar, R. G., and R. F. Keeling (1997), Analysis of the mean annual cycle of the dissolved oxygen anomaly in the World Ocean, J. Mar. Res., 55, 117-151.
Najjar, R. G., and R. F. Keeling (2000), Mean annual cycle of the air-sea oxygen flux: A global view, Global Biogeochem. Cycles, 14, 573-584.
Najjar, R. G., and J. C. Orr (1999), Biotic-HOWTO, internal OCMIP report, 15 pp., Lab. des Sci. du Clim. et 1'Environ., CEA, Saclay, Gif-sur-Yvette, France.
Najjar, R. G., J. L. Sarmiento, and J. R. Toggweiler (1992), Downward transport and fate of organic matter in the ocean: Simulations with a general circulation model, Global Biogeochem. Cycles, 6, 45-76.
Orr, J. C. (2002), Global Ocean Storage of Anthropogenic Carbon (GOSAC), final report, 117 pp., EC Environ. and Clim. Programme, Inst. Pierre Simon Laplace, Paris.
Orr, J. C., et al. (2005), Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms, Nature, 437, 681-696.
Peacock, S. (2004), Debate over the ocean bomb radiocarbon sink: Closing the gap, Global Biogeochem. Cycles, 18, GB2022, doi:10.1029/ 2003GB002211.
Plattner, G.-K., N. Gruber, H. Frenzel, and J. C. McWilliams (2005), Decoupling marine export production from new production, Geophys. Res. Lett., 32, L11612, doi:10.1029/2005GL022660.
Quay, P. (1997), Was a carbon balance measured in the equatorial Pacific during JGOFS?, Deep Sea Res., Part II, 44, 1765-1781.
Saltzman, J., and K. F. Wishner (1997), Zooplankton ecology in the eastern tropical Pacific oxygen minimum zone above a searnount: 1. General trends, Deep Sea Res., Part 1, 44, 907-930.
Sarmiento, J. L. S., and N. Gruber (2006), Ocean Biogeochemical Dynamics, 503 pp., Princton Univ. Press, Princeton, N. J.
Sarmiento, J. L., and J. C. Orr (1991), Three-dimensional simulations of the impact of Southern Ocean nutrient depletion on atmospheric CO2 and ocean chemistry, Limnol. Oceanogr, 36, 1928-1950.
Sarmiento, J. L., T. Herbert, and J. R. Toggweiler (1988), Mediterranean nutrient balance and episodes of anoxia, Global Biogeochem. Cycles, 2, 427-444.
Sarmiento, J. L., G. Theile, R. M. Key, and W. S. Moore (1990), Oxygen and nitrate new production and remineralization in the North Atlantic subtropical gyre, J. Geophys. Res., 95, 18, 303-18, 315.
Schlitzer, R. (2002), Carbon export in the Southern Ocean: Results from inverse modeling and comparison with satellite-based estimates, Deep Sea Res., Part II, 49, 1623-1644.
Siegel, D. A., S. Maritorena, N. B. Nelson, D. A. Hansell, and M. Lorenzi-Kayser (2002), Global distribution and dynamics of colored dissolved and detrital organic materials, J. Geophys. Res., 107(C12), 3228, doi:10. 1029/2001JC000965.
Smetacek, V., and U. Passow (1990), Spring bloom initiation and Sverdrup's critical-depth model, Limnol. Oceanogr., 35, 228-234.
Stephens, C., J. I. Antonov, T. P. Boyer, M. E. Conkright, R. A. Locamini, T. D. O'Brien, and H. E. Garcia (2002), World Ocean Atlas 2001 [CD-ROM], vol. 1, Temperature, NOAA Atlas NESDIS, vol. 49, 167 pp., NOAA, Silver Spring, Md.
Stocker, T. F., D. G. Wright, and L. A. Mysak (1992), A zonally averaged, coupled ocean-atmosphere model for paleoclimate studies, J Clim., 5, 773-797.
Thomas, C., G. Cauwet, and J.-F. Minster (1995), Dissolved organic carbon in the equatorial Atlantic Ocean, Mar. Chem, 49, 155-169.
Walsh, J. (1978), A data set on Northern Hemisphere sea ice extent, 1953-76, Glaciol. Data Rep. GD-2, pp. 49-51, World Data Cent. for Glaciol. (Snow and Ice), Boulder, Colo.
Wanninkhof, R. (1992), Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res., 97, 7373-7382.
Watson, A. J., and J. C. Orr (2003), Carbon dioxide fluxes in the global ocean, in Ocean Biogeochemistry: the Role of the Ocean Carbon Cycle in Global Change (a JGOFS Synthesis), edited by M. Fasham et al., chap. 5, pp. 123-141, Springer, Berlin.
Willey, D. A., R. A. Fine, R. E. Sonnerup, J. L. Bullister, W. M. Smethie Jr., and M. J. Warner (2004), Global oceanic chlorofluorocarbon inventory, Geophys. Res. Lett., 31, L01303, doi:10.1029/ 2003GL018816.
Williams, R. G., and M. J. Follows (1998), The Ekman transfer of nutrients and maintenance of new production over the North Atlantic, Deep Sea Res., Part 1, 45, 461-489.
Yamanaka, Y., and E. Tajika (1996), The role of the vertical fluxes of particulate organic matter and calcite in the oceanic carbon cycle: Studies using an ocean biogeochemical circulation model, Global Biogeochem. Cycles, 10, 361-382.
Yamanaka, Y, and E. Tajika (1997), Role of dissolved organic matter in the marine biogeochemical cycle: Studies using an ocean biogeochemical general circulation model, Global Biogeochem. Cycles, 11, 599-612.
Yu, E.-F., R. Francois, M. P. Bacon, S. Honjo, A. P. Fleer, S. J. Manganini L. M. M. van der Rutgers, and V Ittekkot (2001), Trapping efficiency of bottom-tethered sediment traps estimated from the intercepted fluxes of 230Th and 231Pa, Deep Sea Res., Part 1, 48, 865-889.
Zhang J., and P. D. Quay (1997), The total organic carbon export rate based on 13C and 12C of DIC budgets in the equatorial Pacific region, Deep Sea Res., Part 11, 44, 2163-2190.
Zwally, H. J., J. Comiso, C. Parkinson, W. Campbell, F. Carsey, and P. Gloerson (1983), Antarctic sea ice, 1973-1976: Satellite passive microwave observations, 206 pp., NASA, Washington, D. C.