[en] It has been previously suggested that changes in the strength and position of the Southern Hemisphere westerlies could be a key contributor to glacial-interglacial atmospheric CO2 variations. To test this hypothesis, we perform a series of sensitivity experiments using an Earth system model of intermediate complexity. A strengthening of the climatological mean surface winds over the Southern Ocean induces stronger upwelling and increases the formation of Antarctic Bottom Water. Enhanced Ekman pumping brings more dissolved inorganic carbon (DIC)-rich waters to the surface. However, the stronger upwelling also supplies more nutrients to the surface, thereby enhancing marine export production in the Southern Hemisphere and decreasing the DIC content in the euphotic zone. The net response is a small atmospheric CO2 increase (similar to 5 ppmv) compared to the full glacial-interglacial CO2 amplitude of similar to 90 ppmv. Roughly the opposite results are obtained for a weakening of the Southern Hemisphere westerly winds.
Mouchet, Anne ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Timm, O.
Language :
English
Title :
Climate and marine carbon cycle response to changes in the strength of the Southern Hemispheric westerlies
Publication date :
2008
Journal title :
Paleoceanography
ISSN :
0883-8305
eISSN :
1944-9186
Publisher :
American Geophysical Union, Washington, United States - District of Columbia
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Archer, D., A. Winguth, D. W. Lea, and N. Mahowald (2000), What caused the glacial/interglacial atmospheric pCO2 cycles?, Rev. Geophys., 38, 159-189.
Archer, D. E., P. A. Martin, J. Milovich, V. Brovkin, G. Plattner, and C. Ashendel (2003), Model sensitivity in the effect of Antarctic sea ice and stratification on atmospheric pCO2, Paleoceanography, 18(1), 1012, doi:10.1029/2002PA000760.
Basile, I., F. E. Grousset, M. Revel, J.-R. Petit, P. E. Biscaye, and N. I. Barkov (1997), Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6, Earth Planet. Sci. Lett., 146, 573-579.
Braconnot, P., et al. (2007), Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum-Part 1: Experiments and large-scale features, Clim. Past, 3, 261-277.
Broecker, W. S. (1982), Ocean chemistry during glacial time, Geochim. Cosmochim. Acta, 46, 1689-1705.
Broecker, W. S. (1998), Paleocean circulation during the last deglaciation: A bipolar see-saw?, Paleoceanography, 13, 119-121.
Cai, W. (2006), Antarctic ozone depletion causes an intensification of the Southern Ocean supergyre circulation, Geophys. Res. Lett., 33, L03712, doi:10.1029/2005GL024911.
Cai, W., and P. G. Baines (1996), Interactions between thermohaline- and wind-driven circulations and their relevance to the dynamics of the Antarctic Circumpolar Current in a coarse-resolution global ocean general circulation model, J. Geophys. Res., 101, 14,073-14,093.
Campin, J. M., and H. Goosse (1999), Parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinate, Tellus, Ser. A, 51, 412-430.
Delmonte, B., J. R. Petit, and V. Maggi (2002), Glacial to Holocene implications of the new 27000-year dust record from the EPICA Dome C (East Antarctica) ice core, Clim. Dyn., 18, 647-660.
Fichefet, T., E. Driesschaert, H. Goosse, P. Huybrechts, I. Janssens, A. Mouchet, and G. Munhoven (2007), Modelling the evolution of climate and sea level during the third millennium (MILMO), Proj. EV/09, Belg. Sci. Policy, Brussels. (Available at http://www.belspo.be/belspo/home/publ/pub\ostc/ EV/rappEV09\en.pdf)
Francois, R., M. A. Altabet, E. F. Yu, D. M. Sigman, M. P. Bacon, M. Frank, G. Bohrmann, G. Bareille, and L. D. Labeyrie (1997), Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period, Nature, 389, 929-935.
Garreaud, R. (2007), Precipitation and circulation covariability in the extratropics, J. Clim., 20, 4789-4797.
Gent, P. R., and J. C. McWilliams (1990), Isopycnal mixing in ocean circulation models, J. Phys. Oceanogr., 20, 150-155.
Gildor, H., E. Tziperman, and J. R. Toggweiler (2002), Sea ice switch mechanism and glacial-interglacial CO2 variations, Global Biogeochem. Cycles, 16(3), 1032, doi:10.1029/2001GB001446.
Goosse, H., and T. Fichefet (1999), Importance of ice-ocean interactions for the global ocean circulation: A model study, J. Geophys. Res., 104(C10), 23,337-23, 355.
Goosse, H., E. Deleersnijder, T. Fichefet, and M. H. England (1999), Sensitivity of a global coupled ocean-sea ice model to the parameterization of vertical mixing, J.Geophys. Res., 104(C6), 13,681-13,695.
Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood (2000), The simulation of SST, sea-ice extents and ocean heat transports in a version of the Hadley Center Model without flux adjustments, Clim. Dyn., 16, 147-168.
Jin, F.-F., L.-L. Pan, and M. Watanabe (2006), Dynamics of synoptic eddy and low-frequency flow interaction. Part I: A linear closure, J. Atmos. Sci., 63, 1677-1694.
K-1 Model Developers (2004), K-1 Coupled GCM (Miroc description) 1, edited by H.|Hasumi and S.|Emori, Tech. Rep. 1, Cent. for Clim. Syst. Res., Univ. of Tokyo, Tokyo. (Available at http://www.ccsr.u-tokyo.ac.jp/kyosei/ hasumi/MIROC/tech-repo.pdf)
Lamy, F., D. Hebbeln, and G. Wefer (1999), High-resolution marine record of climatic change in mid-latitude Chile during the last 28,000 years based on terrigenous sediment parameters, Quat. Res., 51, 83-93.
Law, R. M., R. J. Matear, and R. J. Francey (2008), Comment on "Saturation of the Southern Ocean CO2 sink due to recent climate change", Science, 319, 570.
Lenton, A., and R. J. Matear (2007), Role of the Southern Annular Mode (SAM) in Southern Ocean CO2 uptake, Global Biogeochem. Cycles, 21, GB2016,doi:10.1029/2006GB002714.
LeQuéré, C., et al. (2007), Saturation of the Southern Ocean CO2 sink due to recent climate change, Science, 316, 1735-1738.
Lim, G. H., J. R. Holton, and J. M. Wallace (1991), The structure of the ageostrophic wind field in baroclinic waves, J. Atmos. Sci., 48, 1733-1745.
Lovenduski, N. S., N. Gruber, S. C. Doney, and I. D. Lima (2007), Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the Southern Annular Mode, Global Biogeochem. Cycles, 21, GB2026, doi:10.1029/2006GB002900.
Maldonado, A., J. L. Betancourt, C. Latorre, and C. Villagran (2005), Pollen analyses from a 50000-yr rodent midden series in the southern Atacama desert (25°30′S), J.Quat. Sci., 20, 493-507.
Marinov, I., A. Gnanadesikan, J. R. Toggweiler, and J. L. Sarmiento (2006), The Southern Ocean biogeochemical divide, Nature, 441, 964-967.
Markgraf, V., J. A. Rodson, P. A. Kershaw, M. S. McGlone, and N. Nicholls (1992), Evolution of the Late Pleistocene and Holocene climates in the circum-South Pacific land areas, Clim. Dyn., 6, 193-211.
Marti, O., et al. (2005), The new IPSL Climate System Model: IPSL-Cm4, Note Pole Model, 26, Inst. Pierre-Simon Laplace, Paris.
Martin, J. H. (1990), Glacial-interglacial CO2 change: The iron hypothesis, Paleoceanography, 5, 1-13.
McElroy, M. B. (1983), Marine biological controls on atmospheric CO 2 and climate, Nature, 302, 328-329.
Menviel, L., A. Timmermann, A. Mouchet, and O. Timm (2008), Meridional reorganizations of marine and terrestrial productivity during Heinrich events, Paleoceanography, 23, PA1203, doi:10.1029/2007PA001445.
Mikaloff Fletcher, S. E., et al. (2006), Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean, Global Biogeochem. Cycles, 20, GB2002, doi:10.1029/2005GB002530.
Moreno, P. I., T. V. Lowell, G. L. Jacobson Jr., and G. H. Denton (1999), Abrupt vegetation and climate changes during the last glacial maximum and last termination in the Chilean lake district: A case study from Canal de la Puntilla (41°S), Geogr. Ann., Ser. A, 81, 285-311.
Mouchet, A., and L. M. Francois (1996), Sensitivity of a Global Oceanic Carbon Cycle Model to the circulation and to the fate of organic matter: Preliminary results, Phys. Chem. Earth, 21, 511-516.
Omta, A. W., J. Bruggeman, S. A. L. M. Kooijman, and H. A. Dijkstra (2006), Biological carbon pump revisited: Feedback mechanisms between climate and the Redfield ratio, Geophys. Res. Lett., 33, L14613, doi:10.1029/2006GL026213.
Opsteegh, J. D., R. J. Haarsma, F. M. Selten, and A. Kattenberg (1998), ECBILT: A dynamic alternative to mixed boundary conditions in ocean models, Tellus, Ser. A, 50, 348-367.
Otto-Bliesner, B. L., E. C. Brady, G. Clauzet, R. Tomas, S. Levis, and Z. Kothavala (2006), Last Glacial Maximum and Holocene climate in CCSM3, J. Clim., 19, 2526-2544.
Peltier, W. R. (2004), Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE, Annu. Rev. Earth Planet Sci., 23, 335-357.
Petit, J. R., et al. (1999), Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429-436.
Rojas, M., P. Moreno, M. Kageyama, M. Crucifix, C. Hewitt, A. Abe-Ouchi, R. Ohgaito, E. C. Brady, and P. Hope (2008), The Southern Westerlies during the Last Glacial Maximum in PMIP2 simulations, Clim. Dyn., doi:10.1007/s00382-008-0421-7, in press.
Sabine, C. L., et al. (2004), The oceanic sink of anthropogenic CO 2, Science, 305, 367-371.
Sexton, D. M. H. (2001), The effect of stratospheric ozone depletion on the phase of the Antarctic oscillation, Geophys. Res. Lett., 28, 3697-3700.
Shulmeister, J., et al. (2004), The Southern Hemisphere westerlies in the Australasian sector over the last glacial cycle: A synthesis, Quat. Int., 118, 23-53.
Stephens, B. B., and R. F. Keeling (2000), The influence of Antarctic sea ice on glacial-interglacial CO2 variations, Nature, 404, 171-174.
Stocker, T. F., A. Timmermann, M. Renold, and O. Timm (2007), Effects of salt compensation on the climate model response in simulations of large changes of the Atlantic Meridional Overturning Circulation, J. Clim., 20, 5912-5928.
Stout, J.-B. W., and F. Lamy (2004), Climate variability at the southern boundaries of the Namib (southwestern Africa) and Atacama (northern Chile) coastal deserts during the last 120,000 yr, Quat. Res., 62, 301-309.
Thompson, D. W. J., and S. Solomon (2002), Interpretation of recent Southern Hemisphere climate change, Science, 296, 895-899.
Timm, O., and A. Timmermann (2007), Simulation of the last 21,000 years using accelerated transient boundary conditions, J. Clim., 20, 4377-4401.
Toggweiler, J. R., J. L. Russell, and S. R. Carson (2006), Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages, Paleoceanography, 21, PA2005, doi:10.1029/2005PA001154.
Tschumi, T., F. Joos, and P. Parekh (2008), How important are Southern Hemisphere wind changes for low glacial carbon dioxide? A model study, Paleoceanography, doi:10.1029/2008PA001592, in press.
Valero-Garcés, B. L., B. Jenny, M. Rondanelli, A. Delgado-Huertas, S. J. Bums, H. Veit, and A. Moreno (2005), Palaeohydrology of Laguna de Tagua Tagua (34°30′S) and moisture fluctuations in Central Chile for the last 46 000 yr, J. Quat. Sci., 20, 625-641.
Winguth, A. M. E., D. Archer, J.-C. Duplessy, E. Maier-Reimer, and U. Mikolajewicz (1999), Sensitivity of paleonutrient tracer distributions and deep-sea circulation to glacial boundary conditions, Paleoceanography, 14, 304-323.
Zickfeld, K., J. C. Fyfe, M. Eby, and A. J. Weaver (2008), Comment on "Saturation of the Southern Ocean CO2 sink due to recent climate change,", Science, 319, 570b.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.