Abstract :
[en] This paper investigates the isotope effect that occurs when XOCO+ ions dissociate into XOC+ + 0 on a microsecond time scale (X = H or D). The reaction mechanism involves an electronic spin-forbidden predissociation between a stable singlet state and a repulsive triplet. Application of the statistical equations developed in the previous paper shows that, at a given energy, the predissociation rate constant is consistently smaller for DOCO’ than for HOCO+. Therefore, the internal energy necessary to bring about dissociation of the hydrogenated compound with a given rate constant is always lower than that of the deuteriated compound by a quantity AE* which is found to be equal to ca. 0.050 eV when k = lo6 s-l and to ca 0.020 eV for k = lo3 s-1. As a result, the excess energy which is released as kinetic energy carried by the fragments is substantially greater for the deuteriated than for the hydrogenated compound. This accounts for experiments which indicate that, in the microsecond time scale, DOCO’ gives rise to a dished metastable peak whereas the corresponding signal for HOCO’ is simply Gaussian.
Scopus citations®
without self-citations
11