[en] A prominent, middle Miocene (17.5-13.5 Ma) carbon isotope excursion ubiquitously recorded in carbonate sediments has been attributed to enhanced marine productivity and sequestration of C-13 depleted organic carbon in marine sediments or enhanced carbon burial in peat/lignite deposits on land. Here we test the hypothesis that the marine delta C-13 record reflects a change in productivity with proxy records from three Atlantic Ocean sites (Deep Sea Drilling Program Site 608 and Ocean Drilling Program Sites 925 and 1265). Our multiproxy approach is based on benthic foraminiferal accumulation rates, elemental ratios (Ba/Al and P/Al), the delta C-13 of bulk sedimentary organic matter, and dissolution indices. We compare these proxies to benthic foraminiferal delta C-13 values measured on the same samples. Our results indicate that marine paleoproductivity in the Atlantic Ocean is not related to the benthic foraminiferal delta C-13 excursion. A numerical box model confirms that marine productivity cannot account for the delta C-13 maximum. The model shows that sequestration of 1.5 x 10(18) mol C in the terrestrial realm over a period of 3 Ma leads to a 0.9 parts per thousand delta C-13 increase in the deep ocean, which is near the observed records. Therefore, an increase in continental organic carbon sequestration is the most plausible way to enrich the ocean's carbon pool with C-13, which is consistent with coeval lignite deposits worldwide. The delta C-13 values of bulk sedimentary organic matter parallel the delta C-13 of dissolved inorganic carbon as reflected by benthic foraminiferal delta C-13 values suggesting no significant change in atmospheric pCO(2) levels over the investigated period.
Diester-Haass, Liselotte; Universität des Saarlandes, Saarbrücken, Germany > Zentrum für Umweltwissenschaften
Billups, Katharina
Groecke, Darren R
François, Louis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Lefebvre, Vincent
Emeis, Kay C
Language :
English
Title :
Mid-Miocene paleoproductivity in the Atlantic Ocean and implications for the global carbon cycle
Publication date :
2009
Journal title :
Paleoceanography
ISSN :
0883-8305
eISSN :
1944-9186
Publisher :
American Geophysical Union, Washington, United States - District of Columbia
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Anderson, R. F., and G. Winckler (2005), Problems with paleoproductivity proxies, Paleoceanography, 20, PA3012, doi:10.1029/2004PA001107.
Antoine, D., J.-M. Andre, and A. Morel (1996), Oceanic primary production: 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll, Global Biogeochem. Cycles, 10, 57-69, doi:10.1029/95GB02832.
Averyt, K. B., and A. Paytan (2004), A comparison of multiple proxies for export production in the equatorial Pacific, Paleoceanography, 19, PA4003, doi:10.1029/2004PA001005.
Berger, W. H., R. M. Leckie, T. R. Janecek, R. Stax, and T. Takayama (1993), Neogene carbonate sedimentation on Ontong Java Plateau: Highlights and open questions, Proc. Ocean Drill. Program Sci. Results, 130, 711-744.
Billups, K., and D. P. Schrag (2002), Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminifera, Paleoceanography, 17(1), 1003, doi:10.1029/2000PA000567.
Browning, J. V., K. G. Miller, P. P. McLaughlin, M. A. Kominz, P. J. Sugarman, D. Monteverde, M. D. Feigenson, and J. C. Hernandez (2006), Quantification of the effects of eustasy, subsidence, and sediment supply on Miocene sequences, mid-Atlantic margin of the United States, Geol. Soc. Am. Bull., 118, 567-588, doi:10.1130/B25551.1.
Camp, V. E., M. E. Ross, and W. E. Hanson (2003), Genesis of flood basalts and basin and range volcanic rocks from Steens Mountain to the Malheur River Gorge, Oregon, Geol. Soc. Am. Bull., 115, 105-128, doi:10.1130/00167606(2003)115<0105:GOFBAB>2.0.CO;2.
Chesley, J. T., and J. Ruiz (1998), Crust-mantle interaction in large igneous provinces: Implications from the Re-Os isotope systematics of the Columbia River flood basalts, Earth Planet. Sci. Lett., 154, 1-11, doi:10.1016/S0012821X(97)00176-3.
Cogné, J.-P., and E. Humler (2006), Trends and rhythms in global seafloor generation rate, Geochem. Geophys. Geosyst., 7, Q03011, doi:10.1029/2005GC001148.
Compton, J. S., S. W. Snyder, and D. A. Hodell (1990), Phosphogenesis and weathering of shelf sediments from the southeastern United States: Implications for Miocene δ13C excursions and global cooling, Geology, 18, 1227-1230, doi:10.1130/0091-7613(1990)018<1227:PAWOSS >2.3.CO;2.
Curry, W. B., et al. (1995), Proceedings of the Ocean Drilling Program, Initial Results, vol. 154, 1111 pp., Ocean Drill. Program, College Station, Tex.
Delaney, M. L., and E. A. Boyle (1987), Cd/Ca in late Miocene benthic foraminifera and changes in the global organic carbon budget, Nature, 330, 156-159, doi:10.1038/330156a0.
Demicco, R. V., T. K. Lowenstein, and L. A. Hardie (2003), Atmospheric pCO2 since 60Ma from records of seawater pH, calcium, and primary carbonate mineralogy, Geology, 31, 793-796, doi:10.1130/G19727.1.
Derry, L. A., and C France-Lanord (1996), Neogene growth of the sedimentary organic carbon reservoir, Paleoceanography, 11, 267-275, doi:10.1029/95PA03839.
Dessert, C., B. Dupré, L. M. François, J. Schott, J. Gaillardet, G. J. Chakrapani, and S. Bajpai (2001), Erosion of deccan traps determined by river geochemistry: Impact on the global climate and the 87Sr/86Sr ratio of seawater, Earth Planet. Sci. Lett., 188, 459-474, doi:10.1016/S0012-821X(01)00317-X.
Diester-Haass, L., and S. Nees (2004), Late Neogene history of paleoproductivity and ice rafting South of Tasmania, in The Cenozoic Southern Ocean: Tectonics, Sedimentation, and Climate Change Between Australia and Antarctica, Geophys. Monogr. Ser., vol. 148, edited by N. F. Exon, J. P. Kennett, and M. J. Malone, pp. 253-272, doi:10.1029/148GM18, AGU, Washington, D. C.
Diester-Haass, L., P. A. Meyers, and T. Bickert (2004), Carbonate crash and biogenic bloom in the Late Miocene: Evidence from ODP Sites 1085, 1086 and 1087 in the Cape Basin, southeast Atlantic Ocean, Paleoceanography, 19, PA1007, doi:10.1029/2003PA000933.
Diester-Haass, L., K. Billups, and K.-C. Emeis (2005), In search of the late Miocene-early Pliocene "biogenic bloom" in the Atlantic Ocean (Ocean Drilling Program Sites 982, 925, and 1088), Paleoceanography, 20, PA4001, doi:10.1029/2005PA001139.
Diester-Haass, L., K. Billups, and K.-C. Emeis (2006), Late Miocene carbon isotope records and marine biological productivity: Was there a (dusty) link?, Paleoceanography, 21, PA4216, doi:10.1029/2006PA001267.
Dittert, N., K.-H. Baumann, T. Bickert, R. Henrich, R. Huber, H. Kinkel, and H. Meggers (1999), Carbonate dissolution in the deep-sea: Methods, quantification and paleoceanographic application, in Use of Proxies in Paleoceanography, edited by G. Fischer and G. Wefer, pp. 255-284, Springer, New York.
Dymond, J., E. Suess, and M. Lyle (1992), Barium in deep sea sediment: A geochemical proxy for paleoproductivity, Paleoceanography, 7, 163-181, doi:10.1029/92PA00181.
Eagle, M., A. Paytan, K. R. Arrigo, G. van Dijken, and R. Murray (2003), A comparison between excess barium and barite as indicators of carbon export, Paleoceanography, 18(1), 1021, doi:10.1029/2002PA000793.
Filippelli, G. M. (1997), Intensification of the Asian monsoon and a chemical weathering event in the late Miocene-early Pliocene: Implications for late Neogene climate change, Geology, 25, 27-30, doi:10.1130/0091- 7613(1997)025<0027:IOTAMA>2.3.CO;2.
Filippelli, G. M., and M. L. Delaney (1995), Phosphorous geochemistry and accumulation rates in the eastern equatorial Pacific Ocean: Results from Leg 138, Proc Ocean Drill. Program Sci. Results, 138, 757-767.
Flower, B. P., and J. P. Kennett (1993), Middle Miocene ocean-climate transition: High resolution oxygen and carbon isotopic records from Deep Sea Drilling Project Site 588A, southwest Pacific, Paleoceanography, 8, 811-843, doi:10.1029/93PA02196.
Flower, B. P., and J. P. Kennett (1994), The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling, Palaeogeogr. Palaeoclimatol. Palaeoecol., 108, 537-555, doi:10.1016/0031-0182(94)90251-8.
Föllmi, K. B., C. Badertscher, E. de Kaenel, P. Stille, C. M. John, T. Adatte, and P. Steinmann (2005), Phosphogenesis and organic-carbon preservation in the Miocene Monterey Formation at Naples Beach, California: The Monterey hypothesis revisited, Geol. Soc. Am. Bull., 117, 589-619, doi:10.1130/B25524.1.
Föllmi, K. B., B. Gertsch, J.-P. Renevey, E. De Kaenel, and P. Stille (2008), Stratigraphy and sedimentology of phosphate rich sediments in Malta and southeastern Sicily (latest Oligocene to early Miocene), Sedimentology, 55, 1029-1051, doi:10.1111/j.1365-3091.2007.00935.x.
François, L. M., and J. C. G. Walker (1992), Modelling the Phanerozoic carbon cycle and climate: Constraints from the 87Sr/ 86Sr isotopic ratio of seawater, Am. J. Sci., 292, 81-135.
Francois, R., M. A. Altabet, R. Goericke, D. C. McCorkle, C. Brunet, and A. Poisson (1993), Changes in the δ13C of surface water particulate organic matter across the subtropical convergence in the SW Indian Ocean, Global Biogeochem. Cycles, 7, 627-644, doi:10.1029/93GB01277.
Francois, R. S., S. Honjo, S. J. Manganini, and G. E. Ravizza (1995), Biogenic Ba fluxes to the deep sea: Implications for paleoproductivity reconstructions, Global Biogeochem. Cycles, 9, 289-303, doi:10.1029/95GB00021.
Freeman, K. H., and J. M. Hayes (1992), Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels, Global Biogeochem. Cycles, 6, 185-198, doi:10.1029/92GB00190.
Gaillardet, J., B. Dupré, P. Louvat, and C. J. Allègre (1999), Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers, Chem. Geol., 159, 3-30, doi:10.1016/S0009-2541(99)00031-5.
Gradstein, F., J. Ogg, and A. Smith (2004), A Geologic Time Scale 2004, 589 pp., Cambridge Univ. Press, Cambridge, U. K.
Grant, K. M., and G. R. Dickens (2002), Coupled productivity and carbon isotope records in the southwest Pacific Ocean during the late Miocene-early Pliocene biogenic bloom, Palaeogeogr. Palaeoclimatol. Palaeoecol., 187, 61-82, doi:10.1016/S00310182(02)00508-4.
Grard, A., L. M. François, C. Dessert, B. Dupré, and Y. Goddéris (2005), Basaltic volcanism and mass extinction at the Permo-Triassic boundary: Environmental impact and modeling of the global carbon cycle, Earth Planet. Sci. Lett., 234, 207-221, doi:10.1016/j.epsl.2005. 02.027.
Hales, T. C., D. L. Abt, E. D. Humphreys, and J. J. Roering (2005), A lithospheric instability origin for Columbia River flood basalts and Wallowa Mountains uplift in northeast Oregon, Nature, 438, 842-845, doi:10.1038/nature04313.
Hayes, J. M., B. N. Popp, R. Takagiku, and M. W. Johnson (1989), An isotopic study of biochemical relationships between carbonates and organic carbon in the Greenhorn Formation, Geochim. Cosmochim. Acta, 53, 2961-2972, doi:10.1016/0016-7037(89)90172-5.
Henderiks, J., and M. Pagani (2007), Refining ancient carbon dioxide estimates: Significance of coccolithophore cell size for alkenone-based pCO2 records, Paleoceanography, 22, PA3202, doi:10.1029/2006PA001399.
Henderiks, J., and M. Pagani (2008), Coccolithophore cell size and the Paleogene decline in atmospheric CO2, Earth Planet. Sci. Lett., 269, 576-583, doi:10.1016/j.epsl.2008.03.016.
Herguera, J. C. (2000), Last glacial paleoproductivity patterns in the eastern equatorial Pacific: Benthic foraminifera records, Mar. Micropaleontol, 40, 259-275, doi:10.1016/S03778398(00)00041-4.
Herguera, J. C., and W. A. Berger (1991), Paleoproductivity from benthic foraminifera abundance: Glacial to postglacial change in the west-equatorial Pacific, Geology, 19, 1173-1176, doi:10.1130/0091-7613(1991)019<1173: PFBFAG>2.3.CO;2.
Holbourn, A., W. Kuhnt, J. A. Simo, and Q. Li (2004), Middle Miocene isotope stratigraphy and paleoceanographic evolution of the northwest and southwest Australian margins (Wombat Plateau and Great Australian Bight), Palaeogeogr. Palaeoclimatol. Palaeoecol., 208, 1-22, doi:10.1016/j. palaeo.2004.02.003.
Holbourn, A., W. Kuhnt, M. Schulz, and H. Erlenkeuser (2005), Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion, Nature, 438, 483-487, doi:10.1038/nature04123.
Holdgate, G. R., I. Cartwright, D. T. Blackburn, M. W. Wallace, S. J. Gallagher, B. E. Wagstaff, and L. Chung (2007), The Middle Miocene Yallourn coal seam-The last coal in Australia, Int. J. Coal Geol., 70, 95-115, doi:10.1016/j.coal.2006.01.007.
Hoorn, C., I. Guerrero, G. A. Sarmiento, and M. A. Lorente (1995), Andean tectonics as a cause for changes in drainage patterns in Miocene northern South America, Geology, 23, 237-240, doi:10.1130/0091-7613(1995)023<0237: ATAACF>2.3.CO;2.
Isaacs, C. M. (2001), Depositional framework of the Monterey formation, California, in The Monterey Formation: From Rocks to Molecules, edited by C. M. Isaacs and K. Rullkötter, pp. 1-30, Columbia Univ. Press, New York.
Jacobs, E., H. Weissert, and G. Shields (1996), The Monterey event in the Mediterranean: A record from shelf sediments of Malta, Paleoceanography, 11, 717-728, doi:10.1029/96PA02230.
Jasper, J. P., and J. M. Hayes (1994), Reconstruction of palaeoceanic pCO2 levels from carbon isotopic compositions of sedimentary biogenic components, in Carbon Cycling in the Glacial Ocean: Constraints on the Oceans Role in Global Climate Change, NATO ASI Ser. I, vol. 17, edited by R. Zahn et al., pp. 323-341, Springer, Berlin.
Jia, G., P. Peng, Q. Zhao, and Z. Jia (2003), Changes in terrestrial ecosystem since 30 Ma in east Asia: Stable isotope evidence from black carbon in the South China Sea, Geology, 31, 1093-1096, doi:10.1130/G19992.1.
John, C. M., K. B. Follmi, M. Mutti, E. Kaenel, T. Adatte, P. Steinmann, and C. Badertscher (2002), Carbonaceous and phosphate-rich sediments of the Miocene Monterey Formation at El Capitan State Beach (California), J. Sediment. Res., 72, 252-267, doi:10.1306/080701720252.
Keigwin, L. D. (1976), Late Cenozoic planktonic foraminiferal biostratigraphy and paleoceanography of the Panama Basin, Micropaleontology, 22, 419-422, doi:10.2307/1485173.
Keigwin, L. D. (1987), Toward a high resolution chronology for the latest Miocene paleoceanographic events, Paleoceanography, 2, 639-660, doi:10.1029/PA002i006p00639.
Keigwin, L. D., and N. J. Shackleton (1980), Uppermost Miocene carbon isotope stratigraphy of a piston core in the equatorial Pacific, Nature, 284, 613-614, doi:10.1038/284613a0.
Keller, G., and T. A. Barron (1983), Paleoclimatic implications of Miocene deep sea hiatuses, Geol. Soc. Am. Bull., 94, 590-613, doi:10.1130/0016-7606(1983)94<590:PIOMDH>2.0.CO;2.
Kürschner, W. M., Z. Kvaček, and D. L. Dilcher (2008), The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems, Proc Natl. Acad. Sci. U. S. A., 105, 449-453, doi:10.1073/pnas.0708588105.
Loutit, T. S. (1981), Late Miocene paleoclimatology: Subantarctic water mass, southwest Pacific, Mar. Micropaleontol., 6, 1-27, doi:10.1016/0377-8398(81)90010-4.
Miller, K. G., J. D. Wright, and R. G. Fairbanks (1991), Unlocking the ice house: OligoceneMiocene oxygen isotopes, eustasy, and margin erosion, J. Geophys. Res., 96, 6829-6848, doi:10.1029/90JB02015.
Mosbrugger, V., T. Utescher, and D. L. Dilcher (2005), Cenozoic continental climatic evolution of central Europe, Proc Natl. Acad. Sci. U. S. A., 102, 14,964-14,969, doi:10.1073/pnas.0505267102.
Murray, D. W., and L. C. Peterson (1997), Biogenic carbonate production and preservation changes between 5 and 10 Ma from the Ceara Rise, western equatorial Atlantic, Proc. Ocean Drill. Program Sci. Results, 154, 375-388.
Mutti, M., A. W. Droxler, and A. D. Cunnigham (2005), Evolution of the northern Nicaragua Rise during the Oligocene-Miocene: Drowning by environmental factors, Sediment. Geol., 175, 237-258, doi:10.1016/j.sedgeo.2004.12.028.
Nees, S. (1997), Late Quaternary palaeoceanography of the Tasman Sea: The benthic foraminiferal view, Palaeogeogr. Palaeoclimatol. Palaeoecol., 131, 365-389, doi:10.1016/S0031-0182(97)00012-6.
Opdyke, B. N., and B. H. Wilkinson (1988), Surface area control of shallow cratonic to deep marine carbonate accumulation, Paleoceanography, 3, 685-703, doi:10.1029/PA003i006p00685.
Opdyke, B. N., and B. H. Wilkinson (1993), Carbonate mineral saturation state and cratonic limestone accumulation, Am. J. Sci., 293, 217-234.
Pagani, M., M. A. Arthur, and K. H. Freeman (1999), Miocene evolution of atmospheric carbon dioxide, Paleoceanography, 14, 273-292, doi:10.1029/1999PA900006.
Pagani, M., M. A. Arthur, and K. H. Freeman (2000), Variations in Miocene phytoplankton growth rates in the southwest Atlantic: Evidence for changes in ocean circulation, Paleoceanography, 15(5), 486-496, doi:10.1029/ 1999PA000484.
Peterson, L. C., and L. Stramma (1991), Upper level circulation in the South Atlantic Ocean, Prog. Oceanogr., 26, 1-73, doi:10.1016/0079- 6611(91)90006-8.
Poore, H. R., R. Samworth, N. J. White, S. M. Jones, and I. N. McCave (2006), Neogene overflow of Northern Component Water at the Greenland-Scotland Ridge, Geochem. Geophys. Geosyst., 7, Q06010, doi:10.1029/2005GC001085.
Rau, G. H., T. Takahashi, and D. J. Des Marais (1989), Latitudinal variations in plankton δ13C: Implications for CO2 and productivity in past oceans, Nature, 341, 516-518, doi:10.1038/341516a0.
Rau, G. H., U. Riebesell, and D. Wolf-Gladrow (1997), [CO2] aq-dependent photosynthetic δ13C fractionation in the ocean: A model versus measurements, Global Biogeochem. Cycles, 11, 267-278, doi:10.1029/97GB00328.
Ravelo, A. C., et al. (1997), Pliocene carbonate accumulation along the California margin, Paleoceanography, 12, 729-741, doi:10.1029/97PA02525.
Reitz, A., K. Pfeifer, G. de Lange, and J. Klump (2004), Biogenic barium and the detrital Ba/Al ratio: A comparison of their direct and indirect determination, Mar. Geol., 204, 289-300, doi:10.1016/S0025-3227(04)00004- 0.
Retallack, G. J. (2001), Cenozoic expansion of grasslands and climate cooling, J. Geol., 109, 407-426, doi:10.1086/320791.
Royer, D. L. (2006), CO2 forced climate thresholds during the Phanerozoic, Geochim. Cosmochim. Acta, 70, 5665-5675, doi:10.1016/j.gca.2005.11.031.
Ruddiman, W. F., et al. (1987), Initial Reports, Deep Sea Drilling Project, Leg 94, vol. 1, 613 pp., U.S. Govt. Print. Off., Washington, D. C.
Savin, S., L. Abel, E. Barrera, D. Hodell, G. Keller, J. P. Kennett, J. Killingley, M. Murphy, and E. Vincent (1985), The evolution of Miocene surface and near surface marine temperatures: Oxygen isotope evidence, in The Miocene Ocean: Paleoceanography and Biogeography, edited by J. P. Kennett, Mem. Geol. Soc. Am., 163, 49-82.
Schmiedl, G., and A. Mackensen (1997), Late Quaternary paleoproductivity and deep water circulation in the eastern South Atlantic Ocean: Evidence from benthic foraminifera, Palaeogeogr. Palaeoclimatol. Palaeoecol., 130, 43-80, doi:10.1016/S0031-0182(96)00137-X.
Schmitz, B. (1987), Barium, equatorial high productivity and the northward wandering of the Indian continent, Paleoceanography, 2, 63-77, doi:10.1029/PA002i001p00063.
Shevenell, A. E., J. P. Kennett, and D. W. Lea (2004), Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion, Science, 305, 1766-1770, doi:10.1126/science.1100061.
Shipboard Scientific Party (2004), Site 1265, Proc. Ocean Drill. Program Initial Rep., 208, 1-107.
Siesser, W. G. (1995), Paleoproductivity of the Indian Ocean during the Tertiary Period, Global Planet. Change, 11, 71-88, doi:10.1016/0921- 8181(95)00003-A.
Southam, J. R., and W. W. Hay (1981), Global sedimentary mass balance and sea level changes, in The Sea, edited by C. Emiliani, pp. 1617-1684, John Wiley, New York.
Spivack, A. J., C.-F. You, and H. J. Smith (1993), Foraminiferal boron isotope ratios as a proxy for surface ocean pH over the past 21 Myr, Nature, 363, 149-151, doi:10.1038/363149a0.
Utescher, T., V. Mosbrugger, and A. Ashraff (2000), Terrestrial climate evolution in northwest Germany over the last 25 million years, Palaios, 15, 430-449.
van Andel, T. H. (1975), Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments, Earth Planet. Sci. Lett., 26, 187-194, doi:10.1016/0012821X(75)90086-2.
van der Zwaan, G. J., I. A. P. Duijnstee, M. den Bulk, S. R. Ernst, N. T. Jannink, and T. J. Kouwenhoven (1999), Benthic foraminifers: Proxies or problems? A review of paleoecological concepts, Earth Sci. Rev., 46, 213-236, doi:10.1016/S0012-8252(99)00011-2.
Vincent, E., and W. H. Berger (1985), Carbon dioxide and polar cooling in the Miocene: The Monterey hypothesis, in The Carbon Cycle and Atmospheric CO2: Natural Variations, Archean to Present, Geophys. Monogr. Ser., vol. 32, edited by E. T. Sundquist and W. S. Broecker, pp. 455-468, AGU, Washington, D. C.
Vincent, E., J. J. Killingly, and W. H. Berger (1980), The Magnetic Epoch 6 carbon isotope shift, a change in the ocean's 13C/12C ratio: 6.2 million years ago, Mar. Micropaleontol., 6, 182-203. Wallmann, K. (2001), Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate, Geochim. Cosmochim. Acta, 65, 3005-3025, doi:10.1016/S0016-7037(01)00638-X.
Weedon, G. P., and N. J. Shackleton (1997), Inorganic geochemical composition of Oligocene to Miocene sediments and productivity variations in the western equatorial Atlantic: Results from Sites 926 and 929, Proc. Ocean Drill. Program Sci. Results, 154, 507-526.
Wold, C. N., and W. W. Hay (1990), Reconstructing ancient sediment fluxes, Am. J. Sci., 290, 1069-1089.
Woodruff, F., and S. M. Savin (1985), δ13C values of Miocene Pacific benthic foraminifera: Correlation with sea-level and biological productivity, Geology, 13, 119-122, doi:10.1130/00917613(1985)13<119: CVOMPB>2.0.CO;2.
Woodruff, F., and S. M. Savin (1989), Miocene deepwater oceanography, Paleoceanography, 4, 87-140, doi:10.1029/PA004i001p00087. Woodruff, F., and S. M. Savin (1991), Mid-Miocene isotope stratigraphy in the deep sea: High resolution correlations, paleoclimatic cycles, and sediment preservation, Paleoceanography, 6, 755-806, doi:10.1029/91PA02561.
Wright, J. G., K. G. Miller, and R. G. Fairbanks (1992), Early and middle Miocene stable isotopes: Implications for deepwater circulation and climate, Paleoceanography, 7, 357-389, doi:10.1029/92PA00760.
Yasuda, H. (1997), Late Miocene-Holocene paleoceanography of the western equatorial Atlantic: Evidence from deep-sea benthic foraminifera, Proc. Ocean Drill. Program Sci. Results, 154, 395-432.
Zachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups (2001), Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686-693, doi:10.1126/science.1059412. Cité Scientifique
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.