Bahadur R.R. (1961) A representation of the joint distribution of responses to n dichotomous items. In: Solomon H., ed. Studies in item analysis and prediction. Stanford Mathematical Studies in the Social Sciences VI, Stanford, CA: Stanford University Press.
Beckman R.J., Nachtsheim, Cook R.D. (1987) Diagnostics for mixed-model analysis of variance. Technometrics 29, 413-426.
Breslow N.E., Clayton D.G. (1993) Approximate inference in generalized linear mixed models. Journal of the American Statistical Association 88, 9-25.
Cook R.D. (1986) Assessment of local influence. Journal of the Royal Statistical Society, Series B 48, 133-169.
Cook R.D., Weisberg S. (1982) Residuals and influence in regression. London: Chapman and Hall.
Cox D.R. (1972) The analysis of multivariate binary data. Applied Statistics 21, 113-120.
Dale J.R. (1986) Global cross-ratio models for bivariate, discrete, ordered responses. Biometrics 42, 909-917.
Fahrmeir L., Tutz G. (1994) Multivariate statistical modelling based on generalized linear models. Heidelberg: Springer-Verlag.
Fitzmaurice G.M., Laird N.M. (1993) A Likelihood-based method for analysing longitudinal binary responses. Biometrika 80, 141-151.
Fitzmaurice G.M., Laird N.M., Rotnitzky A. (1993) Regression models for discrete longitudinal responses. Statistical Science 8, 284-309.
Geys H., Molenberghs G., Ryan L.M. (1997) Pseudo-likelihood inference for clustered binary data. Communications in Statistics: Theory and Methods 26, 2743-2767.
Geys H., Molenberghs G., Ryan L. (1999) Pseudolikelihood modelling of multivariate outcomes in developmental toxicology. Journal of the American Statistical Association 94, 734-745.
Glynn R.J., Laird N.M., Rubin D.B. (1986) Selection modelling versus mixture modelling with non-ignorable nonresponse. In: Wainer H., ed. Drawing inferences from self selected samples. New York: Springer-Verlag, 115-142.
Hogan J.W., Laird N.M. (1997) Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine 16, 239-258.
Kenward M.G., Molenberghs G., Lesaffre E. (1994) An application of maximum likelihood and estimating equations to the analysis of ordinal data from a longitudinal study with cases missing at random. Biometrics 50, 945-953.
Lesaffre E., Verbeke G. (1998) Local influence in linear mixed models. Biometrics 54, 570-582.
Liang K-Y, Zeger S.L. (1986) Longitudinal data analysis using generalized linear models. Biometrika 73, 13-22.
Little R.J.A., Rubin D.B. (1987) Statistical analysis with missing data. New York: Wiley.
Little R.J.A. (1993) Pattern-mixture models for multivariate incomplete data. Journal of the American Statistical Association 88, 125-134.
Little R.J.A. (1994) A class of pattern-mixture models for normal incomplete data. Biometrika 81, 471-483.
McCullagh P., Nelder J.A. (1989) Generalized linear models. London: Chapman and Hall.
Molenberghs G., Goetghebeur E., Kenward M.G. (2001) Sensitivity analysis for incomplete contingency tables. The Slovenian plebiscite case. Journal of the Royal Statistical Society - Series C Applied Statistics 50, 15-30.
Molenberghs G., Goetghebeur E., Lipsitz S.R., Kenward M.G., Lesaffre E., Michiels B. (1999) Missing data perspectives of the fluvoxamine data set: a review. Statistics in Medicine 18, 2449-2464.
Molenberghs G., Kenward M.G., Lesaffre E. (1997) The analysis of longitudinal ordinal data with nonrandom dropout. Biometrika 84, 33-44.
Molenberghs G., Lesaffre E. (1994) Marginal modelling of correlated ordinal data using a multivariate Plackett distribution. Journal of the American Statistical Association 89, 633-644.
Molenberghs G., Lesaffre E. (1999) Marginal modelling of multivariate categorical data. Statistics in Medicine 18, 2237-2255.
Molenberghs G., Ryan L.M. (1999) Likelihood inference for clustered multivariate binary data. Environmetrics 10, 279-300.
Pendergast J.F., Gange S.J., Newton M.A., Lindstrom M.J., Palta M., Fisher M.R. (1996) A survey of methods for analyzing clustered binary response data. International Statistical Review 64, 89-118.
Plackett R.L. (1965) A class of bivariate distributions. Journal of the American Statistical Association 60, 516-522.
Prentice R.L. (1988) Correlated binary regression with covariates specific to each binary observation. Biometrics 44, 1033-1048.
Rosner B. (1984) Multivariate methods in ophtalmology with applications to other paired-data situations. Biometrics 40, 1025-1035.
Rubin D.B. (1976) Inference and missing data. Biometrika 63, 581-592.
Ryan L.M., Molenberghs G. (1999) Statistical methods for developmental toxicity: analysis of clustered multivariate binary data. Annals of the New York Academy of Sciences 895, 196-211.
Scharfstein D.O., Rotnitzky A., Robins J.M. (1999) Adjusting for non-ignorable drop-out using semiparametric nonresponde models (with discussion). Journal of the American Statistical Association 94, 1096-1146.
Stiratelli R., Laird N., Ware J. (1984) Random effects models for serial observations with dichotomous response. Biometrics 40, 961-972.
Thijs H., Molenberghs G., Michiels B., Verbeke G., Curran D. (2000) Strategies to fit pattern-mixture models. (Submitted).
Thompson R., Baker, R.J. (1981) Composite link functions in generalized linear models. Applied Statistics 30, 125-131.
Verbeke G., Molenberghs G. (2000) Linear mixed models for longitudinal data. New York: Springer-Verlag.
Verbeke G., Molenberghs G., Thijs H., Lesaffre E., Kenward M.G. (2001) Sensitivity analysis for non-random dropout: a local influence approach. Biometrics 57, 7-14.
Wolfinger R., O'Connell M. (1993) Generalized linear mixed models: a pseudo-likelihood approach. Journal of Statistical Computation and Simulation 48, 233-243.
Zeger S.C., Liang K-Y, Albert P.S. (1988) Models for longitudinal data: a generalized estimating equation approach. Biometrics 44, 1049-1060.