DNA; mismatch; intercalator; mass spectrometry; fluorescence; methyltransferase; noncovalent
Abstract :
[en] Binding of three macrocyclic bis-intercalators, derivatives of acridine and naphthalene, and two acyclic model compounds to mismatch-containing and matched duplex oligodeoxynucleotides was analyzed by thermal denaturation experiments, electrospray ionization mass spectrometry studies (ESI-MS) and fluorescent intercalator displacement (FID) titrations. The macrocyclic bis-intercalators bind to duplexes containing mismatched thymine bases with high selectivity over the fully matched ones, whereas the acyclic model compounds are much less selective and strongly bind to the matched DNA. Moreover, the results from thermal denaturation experiments are in very good agreement with the binding affinities obtained by ESI-MS
and FID measurements. The FID results also demonstrate that the macrocyclic naphthalene
derivative BisNP preferentially binds to pyrimidine– pyrimidine mismatches compared to all other possible base mismatches. This ligand also efficiently competes with a DNA enzyme (M.TaqI) for binding to a duplex with a TT-mismatch, as shown by competitive fluorescence titrations. Altogether, our results demonstrate that macrocyclic distance- constrained bis-intercalators are efficient and selective mismatch-binding ligands that can interfere with mismatch-binding enzymes.
Research Center/Unit :
Giga-Systems Biology and Chemical Biology - ULiège
Echols,H. and Goodman,M.F. (1991) Fidelity mechanisms in DNA replication. Annu. Rev. Biochem., 60, 477-511.
Goodman,M.F. (1997) Hydrogen bonding revisited: Geometric selection as a principal determinant of DNA replication fidelity. Proc. Natl Acad. Sci. USA, 94, 10493-10495.
Mendelman,L.V., Boosalis,M.S., Petruska,J. and Goodman,M.F. (1989) Nearest neighbor influences on DNA polymerase insertion fidelity. J. Biol. Chem., 264, 14415-14423.
Lee,A.M., Xiao,J. and Singleton,S.F. (2006) Origins of sequence selectivity in homologous genetic recombination: Insights from rapid kinetic probing of RecA-mediated DNA strand exchange. J. Mol. Biol. 360, 343-359.
Gacy,A.M., Goellner,G., Juranic,N., Macura,S. and McMurray,C.T. (1995) Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell, 81, 533-540.
Nakayabu,M., Miwa,S., Suzuki,M., Izuta,S., Sobue,G. and Yoshida,S. (1998) Mismatched nucleotides may facilitate expansion of trinucleotide repeats in genetic disease. Nucleic Acids Res., 26, 1980-1984.
Frederico,L.A., Kunkel,T.A. and Shaw,B.R. (1993) Cytosine deamination in mismatched base pairs. Biochemistry, 32, 6523-6530.
Modrich,P. and Lahue,R. (1996) Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu. Rev. Biochem., 65, 101-133.
Eshleman,J.R. and Markowitz,S.D. (1995) Microsatellite instability in inherited and sporadic neoplasms. Curr. Opin. Oncol., 7, 83-89.
Buermeyer,A.B., Deschênes,S.M., Baker,S.M. and Liskay,R.M. (1999) Mammalian DNA mismatch repair. Annu. Rev. Genet., 33, 533-564.
Ninomiya,H., Nomura,K., Satoh,Y., Okumura,S., Nakagawa,K., Fujiwara,M., Tsuchiya,E. and Ishikawa,Y. (2006) Genetic instability in lung cancer: concurrent analysis of chromosomal, mini- and microsatellite instability and loss of heterozygosity. Br. J. Cancer, 94, 1485-1491.
Kolodner,R.D. and Alani,E. (1994) Mismatch repair and cancer susceptibility. Curr. Opin. Biotechnol., 5, 585-594.
Werntges,H., Steger,G., Riesner,D. and Fritz,H.-J. (1986) Mismatches in DNA double strands: Thermodynamic parameters and their correlation to repair efficiencies. Nucleic Acids Res., 14, 3773-3790.
Rajski,S.R., Jackson,B.A. and Barton,J.K. (2000) DNA repair: Models for damage and mismatch recognition. Mutation Res., 447, 49-72.
Brown,J., Brown,T. and Fox,K.R. (2001) Affinity of mismatch-binding protein MutS for heteroduplexes containing different mismatches. Biochem. J., 354, 627-633.
Burkovics,P., Szukacsov,V., Unk,I. and Haracska,L. (2006) Human Ape2 protein has a 3′-5′ exonuclease activity that acts preferentially on mismatched base pairs. Nucleic Acids Res., 34, 2508-2515.
Nag,N., Rao,B.J. and Krishnamoorthy,G. (2007) Altered dynamics of DNA bases adjacent to a mismatch: A cue for mismatch recognition by MutS. J. Mol. Biol., 374, 39-53.
Porello,S.L., Williams,S.D., Kuhn,H., Michaels,M.L. and David,S.S. (1996) Specific recognition of substrate analogs by the DNA mismatch repair enzyme MutY. J. Am. Chem. Soc., 118, 10684-10692.
Hart,J.R., Glebov,O., Ernst,R.J., Kirsch,I.R. and Barton,J.K. (2006) DNA mismatch-specific targeting and hypersensitivity of mismatch-repair-deficient cells to bulky rhodium(III) intercalators. Proc. Natl Acad. Sci. USA, 103, 15359-15363.
Li,Y., Zon,G. and Wilson,W.D. (1991) Thermodynamics of DNA duplexes with adjacent G·A mismatches. Biochemistry, 30, 7566-7572.
Peyret,N., Seneviratne,P.A., Allawi,H.T. and SantaLucia,J. Jr. (1999) Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A·A, C·C, G·G, and T·T mismatches. Biochemistry, 38, 3468-3477.
Allawi,H.T. and SantaLucia,J. Jr. (1997) Thermodynamics and NMR of Internal G·T Mismatches in DNA. Biochemistry, 36, 10581-10594.
Yamashita,K., Sata,S., Takamiya,H., Takagi,M. and Takenaka,S. (2001) Analysis of the complex of oligonucleotide duplexes with ligands by MALDI-TOF mass spectroscopy. Chem. Lett., 30, 680-681.
Zhong,M., Rashes,M.S., Marky,L.A. and Kallenbach,N.R. (1992) T-T Base mismatches enhance drug-Binding at the branch site in a 4-arm DNA junction. Biochemistry, 31, 8064-8071.
Liu,C. and Chen,F.M. (1996) Actinomycin D binds strongly and dissociates slowly at the dGpdC site with flanking T/T mismatches. Biochemistry 35, 16346-16353.
Jackson,B.A. and Barton,J.K. (1997) Recognition of DNA base mismatches by a rhodium intercalator. J. Am. Chem. Soc., 119, 12986-12987.
Pierre,V.C., Kaiser,J.T. and Barton,J.K. (2007) Insights into finding a mismatch through the structure of a mispaired DNA bound by a rhodium intercalator. Proc. Natl Acad. Sci. USA, 104, 429-434.
Nakatani,K., Sando,S., Kumasawa,H., Kikuchi,J. and Saito,I. (2001) Recognition of guanine-guanine mismatches by the dimeric form of 2-amino-1,8-naphthyridine. J. Am. Chem. Soc., 123, 12650-12657.
Nakatani,K., Sando,S. and Saito,I. (2001) Scanning of guanine-guanine mismatches in DNA by synthetic ligands using surface plasmon resonance. Nat. Biotechnol., 19, 51-55.
Hagihara,S., Kumasawa,H., Goto,Y., Hayashi,G., Kobori,A., Saito,I. and Nakatani,K. (2004) Detection of guanine-adenine mismatches by surface plasmon resonance sensor carrying naphthyridine-azaquinolone hybrid on the surface. Nucleic Acids Res., 32, 278-286.
Kobori,A., Horie,S., Suda,H., Saito,I. and Nakatani,K. (2004) The SPR sensor detecting cytosine-cytosine mismatches. J. Am. Chem. Soc., 126, 557-562.
Yang,X.L., Hubbard,R.B., Lee,M., Tao,Z.F., Sugiyama,H. and Wang,A.H.J. (1999) Imidazole-imidazole pair as a minor groove recognition motif for T : G mismatched base pairs. Nucleic Acids Res., 27, 4183-4190.
Lacy,E.R., Cox,K.K., Wilson,W.D. and Lee,M. (2002) Recognition of TgG mismatched base pairs in DNA by stacked imidazole-containing polyamides: surface plasmon resonance and circular dichroism studies. Nucleic Acids Res., 30, 1834-1841.
Lacy,E.R., Nguyen,B., Le,M., Cox,K.K., O'Hare,C., Hartley,J.A., Lee,M. and Wilson,W.D. (2004) Energetic basis for selective recognition of T·G mismatched base pairs in DNA by imidazole-rich polyamides. Nucleic Acids Res., 32, 2000-2007.
Berthet,N., Michon,J., Lhomme,J., Teulade-Fichou,M.-P., Vigneron,J.P. and Lehn,J.M. (1999) Recognition of abasic sites in DNA by a cyclobisacridine molecule. Chem. Eur. J., 5, 3625-3630.
Jourdan,M., Garcia,J., Lhomme,J., Teulade-Fichou,M.-P., Vigneron,J.P. and Lehn,J.M. (1999) Threading bis-intercalation of a macrocyclic bisacridine at abasic sites in DNA: Nuclear magnetic resonance and molecular modeling study. Biochemistry, 38, 14205-14213.
David,A., Bleimling,N., Beuck,C., Lehn,J.M., Weinhold,E. and Teulade-Fichou,M.P. (2003) DNA mismatch-specific base flipping by a bisacridine macrocycle. ChemBioChem, 4, 1326-1331.
Roberts,R.J. and Cheng,X.D. (1998) Base flipping. Annu. Rev. Biochem. 67, 181-198.
Klimasauskas,S., Kumar,S., Roberts,R.J. and Cheng,X.D. (1994) Hhal methyltransferase flips its target base out of the DNA helix. Cell 76, 357-369.
Peng,T. and Nakatani,K. (2005) Binding of naphthyridine carbamate dimer to the (CGG)n repeat results in the Disruption of the G-C Base Pairing. Angew. Chem., Int. Ed. Engl., 44, 7280-7283.
Cordier,C., Pierre,V.C. and Barton,J.K. (2007) Insertion of a bulky rhodium complex into a DNA cytosine-cytosine mismatch: An NMR solution study. J. Am. Chem. Soc., 129, 12287-12295.
Kwok,P.Y. (2001) Methods for genotyping single nucleotide polymorphisms. Annu. Rev. Genomics Hum. Genet., 2, 235-258.
Nakatani,K. (2004) Chemistry challenges in SNP typing. ChemBioChem 5, 1623-1633.
Petitjean,A. and Barton,J.K. (2004) Tuning the DNA reactivity of cis-platinum: Conjugation to a mismatch-specific metallointercalator. J. Am. Chem. Soc., 126, 14728-14729.
Hart,J.R., Johnson,M.D. and Barton,J.K. (2004) Single-nucleotide polymorphism discovery by targeted DNA photocleavage. Proc. Natl Acad. Sci. USA, 101, 14040-14044.
Zeglis,B.M. and Barton,J.K. (2007) DNA base mismatch detection with bulky rhodium intercalators: Synthesis and applications. Nat. Protoc. 2, 357-371.
Zeglis,B.M. and Barton,J.K. (2006) A mismatch-selective bifunctional rhodium - Oregon Green conjugate: A fluorescent probe for mismatched DNA. J. Am. Chem. Soc., 128, 5654-5655.
Cotton,R.G. (1989) Detection of single base changes in nucleic acids. Biochem. J., 263, 1-10.
Ferrari,M., Carrera,P. and Cremonesi,L. (1996) Different approaches of molecular scanning of point mutations in genetic diseases. Pure Appl. Chem., 68, 1913-1918.
Brown,J., Brown,T. and Fox,K.R. (2003) Cleavage of fragments containing DNA mismatches by enzymic and chemical probes. Biochem. J., 371 697-708.
Bui,C.T., Rees,K., Lambrinakos,A., Bedir,A. and Cotton,R.G.H. (2002) Site-selective reactions of imperfectly matched DNA with small chemical molecules: Applications in mutation detection. Bioorg. Chem., 30, 216-232.
Teulade-Fichou,M.-P., Vigneron,J.P. and Lehn,J.M. (1995) Molecular recognition of nucleosides and nucleotides by a watersoluble cyclo-bis-intercaland receptor based on acridine subunits. Supramol. Chem., 5, 139-147.
Paris,T., Vigneron,J.-P., Lehn,J.-M., Cesario,M., Guilhem,J. and Pascard,C. (1999) Molecular recognition of anionic substrates. Crystal structures of the supramolecular inclusion complexes of terephthalate and isophthalate dianions with a bis-intercaland receptor molecule. J. Inclusion Phenom. Macrocyclic Chem., 33, 191-202.
Amrane,S., De Cian,A., Rosu,, F. Kaiser,M., De Pauwn,E., Teulade-Fichou,M.-P. and Mergny,J.-L. (2008) Identification of trinucleotide repeat ligands with a FRET melting assay. ChemBioChem 9, 1229-1234.
Holz,B., Klimasauskas,S., Serva,S. and Weinhold,E. (1998) 2-Aminopurine as a fluorescent probe for DNA base flipping by methyltransferases. Nucleic Acids Res., 26, 1076-1083.
Goedecke,K., Pignot,M., Goody,R.S., Scheidig,A.J. and Weinhold,E. (2001) Structure of the N6-adenine DNA methyltransferase M.TaqI in complex with DNA and a cofactor analog. Nat. Struct. Biol., 8, 121-125.
Banoub,J.H., Newton,R.P., Esmans,E., Ewing,D.F. and Mackenzie,G. (2005) Recent developments in mass spectrometry for the characterization of nucleosides, nucleotides, oligonucleotides, and nucleic acids. Chem. Rev., 105, 1869-1915.
Hofstadler,S.A. and Griffey,R.H. (2001) Analysis of noncovalent complexes of DNA and RNA by mass spectrometry. Chem. Rev., 101 377-390.
Rosu,F., De Pauw,E. and Gabelica,V. (2008) Electrospray mass spectrometry to study drug-nucleic acids interactions. Biochimie., 90, 1074-1097.
Rosu,F., Gabelica,V., Houssier,C. and De Pauw,E. (2002) Determination of affinity, stoichiometry and sequence selectivity of minor groove binder complexes with double-stranded oligodeoxy-nucleotides by electrospray ionization mass spectrometry. Nucleic Acids Res., 30, e82.
Gabelica,V., Galic,N., Rosu,F., Houssier,C. and De Pauw,E. (2003) Influence of response factors on determining equilibrium association constants of non-covalent complexes by electrospray ionization mass spectrometry. J. Mass Spectrom., 38, 491-501.
Sannes-Lowery,K.A., Griffey,R.H. and Hofstadler,S.A. (2000) Measuring dissociation constants of RNA and aminoglycoside antibiotics by electrospray ionization mass spectrometry. Anal. Biochem., 280 264-271.
Boger,D.L., Fink,B.E. and Hedrick,M.P. (2000) Total synthesis of distamycin A and 2640 analogues: A solution-phase combinatorial approach to the discovery of new, bioactive DNA binding agents and development of a rapid, high-throughput screen for determining relative DNA binding affinity or DNA binding sequence selectivity. J. Am. Chem. Soc., 122, 6382-6394.
Boger,D.L., Fink,B.E., Brunette,S.R., Tse,W.C. and Hedrick,M.P. (2001) A simple, high-resolution method for establishing DNA binding affinity and sequence selectivity. J. Am. Chem. Soc., 123, 5878-5891.
Tse,W.C. and Boger,D.L. (2004) A fluorescent intercalator displacement assay for establishing DNA binding selectivity and affinity. Acc. Chem. Res., 37, 61-69.
Hernandez,L.I., Zhong,M., Courtney,S.H., Marky,L.A. and Kallenbach,N.R. (1994) Equilibrium analysis of ethidium binding to DNA containing base mismatches and branches. Biochemistry, 33, 13140-13146.
Boger,D.L. and Tse,W.C. (2001) Thiazole orange as the fluorescent intercalator in a high resolution fid assay for determining DNA binding affinity and sequence selectivity of small molecules. Bioorg. Med. Chem., 9, 2511-2518.
Ward,D.C., Reich,E. and Stryer,L. (1969) Fluorescence studies of nucleotides and polynucleotides. I. Formycin, 2-aminopurine riboside, 2,6-diaminopurine riboside, and their derivatives. J. Biol. Chem., 244, 1228-1237.
Allan,B.W. and Reich,N.O. (1996) Targeted base stacking disruption by the EcoRI DNA methyltransferase. Biochemistry, 35, 14757-14762.
Beuck,C., Singh,I., Bhattacharya,A., Hecker,W., Parmar,V.S., Seitz,O. and Weinhold,E. (2003) Polycyclic aromatic DNA-base surrogates: High-affinity binding to an adenine-specific base-flipping DNA methyltransferase. Angew. Chem. Int. Ed., 42, 3958-3960.
Yang,A.S., Shen,J.-C., Zingg,J.-M., Mi,S. and Jones,P.A. (1995) Hha and HpaII DNA methyltransferases bind DNA mismatches, methylate uracil and block DNA repair. Nucleic Acids Res., 23 1380-1387.
Klimasauskas,S. and Roberts,R.J. (1995) MHhaI binds tightly to substrates containing mismatches at the target base. Nucleic Acids Res., 23, 1388-1395.
McGhee,J.D. and von Hippel,P.H. (1974) Theoretical aspects of DNA-protein interactions: Co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J. Mol. Biol. 86, 469-489.
Malojcic,G., Piantanida,I., Marinic,M., Zinic,M., Marjanovic,M., Kralj,M., Pavelic,K. and Schneider,H.J. (2005) A novel bis-phenanthridine triamine with pH controlled binding to nucleotides and nucleic acids. Org. Biomol. Chem., 3, 4373-4381.
Dhaenens,M., Lehn,J.-M. and Vigneron,J.-P. (1993) Molecular recognition of nucleosides, nucleotides and anionic planar substrates by a water-soluble bis-intercaland-type receptor molecule. J. Chem. Soc. Perkin Trans. 2, 1379-1381.
Estimated with HyTher software (http://ozone2.chem.wayne.edu/).
Tikhomirova,A., Beletskaya,I.V. and Chalikian,T.V. (2006) Stability of DNA duplexes containing GG, CC, AA, and TT Mismatches. Biochemistry 45, 10563-10571.
Schärer,O.D. (2003) Chemistry and biology of DNA repair. Angew. Chem., 115, 3052-3082;