Leprince, Pierre ; Université de Liège - ULiège > CNCM/ Centre fac. de rech. en neurobiologie cell. et moléc.
Chanas-Sacre, Grazyna; Université de Liège - ULiège > CNCM/ Centre fac. de rech. en neurobiologie cell. et moléc.
Language :
English
Title :
Regulation of Radial Glia Phenotype
Publication date :
2001
Journal title :
Progress in Brain Research
ISSN :
0079-6123
eISSN :
1875-7855
Publisher :
Elsevier, Netherlands
Volume :
132
Pages :
13-22
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture Fondation Charcot FMRE - Fondation Médicale Reine Elisabeth Belgian League against Multiple Sclerosis
Alvarez-Buylla, A., Theelen, M. and Nottebohm, F. (1988) Mapping of radial glia and of a new cell type in adult canary brain. J. Neurosci., 8: 2707-2712.
Alvarez-Buylla, A., Theelen, M. and Nottebohm, F. (1990) Proliferation 'hot spots' in adult avian ventricular zone reveal radial cell division. Neuron, 5: 101-109.
Anton, E.S., Marchionni, M.A., Lee, K.F. and Rakic, P. (1997) Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex. Development, 124: 3501-3510.
Benjelloun-Touimi, S., Jacque, C.M., Derer, P., De Vitry, F., Maunoury, R. and Dupouey, P. (1985) Evidence that mouse astrocytes may be derived from the radial glia: An immunohistochemical study of the cerebellum in the normal and reeler mouse. J. Neuroimmunol., 9: 87-97.
Blass-Kampmann, S., Kindler-Rohrborn, A., Deissler, H., D'Urso, D. and Rajewsky, M.F. (1997) In vitro differentiation of neural progenitor cells from prenatal rat brain: Common cell surface glycoprotein on three glial cell subsets. J. Neurosci. Res., 48: 95-111.
Bovolenta, P., Liem, R.K.H. and Mason, C.A. (1984) Development of cerebellar astroglia: Transitions in form and cytoskeletal content. Dev. Biol., 102: 248-259.
Brockes, J.P. (1994) New approaches to amphibian limb regeneration. Trends Genet., 10: 169-173.
Cameron, R.S. and Rakic, P. (1991) Glial cell lineage in the cerebral cortex: A review and a synthesis. Glia, 4: 124-137.
Chanas-Sacré, G., Thiry, M., Pirard, S., Rogister, B., Moonen, G., Mbebi, C., Verdière-Sahuqué, M. and Leprince, P. (2000) A 295 kDa intermediate filament-associated protein in radial glia and developing muscle cells in vivo and in vitro. Dev. Dyn., 219: 514-525.
Choi, B.H. (1986) Glial fibrillary acidic protein in radial glia of early human fetal cerebrum: A light and electron microscopic immunoperoxidase study. J. Neuropathol. Exp. Neurol., 45: 408-418.
Colombo, J.A. and Napp, M.I. (1996) In vitro induction of radiallike cells by leptomeningeal and cortical astroglial conditioned media. Effect of protease inhibitors. Int. J. Dev. Neurosci., 14: 489-496.
Culican, S.M., Baumrind, N.L., Yamamoto, M. and Pearlman, A.L. (1990) Cortical radial glia: Identification in tissue culture and evidence for their transformation to astrocytes. J. Neurosci., 2: 684-692.
Dahl, D., Crosby, C.J., Sethi, J.S. and Bignami, A. (1985) Glial fibrillary acidic (GFA) protein in vertebrates: Immunofluorescence and immunoblotting study with monoclonal and polyclonal antibodies. J. Comp. Neurol., 239: 75-88.
Dahmane, N. and Ruiz i Altaba, A. (1999) Sonic hedgehog regulates the growth and patterning of the cerebellum. Development, 126: 3089-3100.
D'Arcangelo, G., Nakajima, K., Miyata, T., Ogawa, M., Mikoshiba, K. and Curran, T. (1997) Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J. Neurosci., 17: 23-31.
Davies, S.J., Fitch, M.T., Memberg, S.P., Hall, A.K., Raisman, G. and Silver, J. (1997) Regeneration of adult axons in white matter tracts of the central nervous system. Nature, 390: 680-683.
Davis, A.A. and Temple, S. (1994) A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature, 372: 263-266.
Edwards, M.A., Yamamoto, M. and Caviness Jr., V.S. (1990) Organization of radial glia and related cells in the developing murine CNS. An analysis based upon a new monoclonal antibody marker. Neuroscience, 36: 121-144.
Eng, L.F. (1985) Glial fibrillary acidic protein (GFAP): The major protein of glial intermediate filaments in differentiated astrocytes. J. Neuroimmunol., 8: 203-214.
Eng, L.F., Vanderhaeghen, J.J., Bignami, A. and Gerstl, B. (1971) An acidic protein isolated from fibrous astrocytes. Brain Res., 28: 351-354.
Eng, L.F., Stocklin, E., Lee, Y.L., Shiurba, R.A., Coria, F., Halks-Miller, M., Mozsgai, C., Fukayama, G. and Gibbs, M. (1986) Astrocyte culture on nitrocellulose membranes and plastic: Detection of cytoskeletal proteins and mRNAs by immunocytochemistry and in situ hybridization. J. Neurosci. Res., 16: 239-250.
Feng, L. and Heintz, N. (1995) Differentiating neurons activate transcription of the brain lipid-binding protein gene in radial glia through a novel regulatory element. Development, 121: 1719-1730.
Feng, L., Hatten, M.E. and Heintz, N. (1994) Brain lipid-binding protein (BLBP): A novel signaling system in the developing mammalian CNS. Neuron, 12: 895-908.
Fitch, M.T. and Silver, J. (1997) Glial cell extracellular matrix: Boundaries for axon growth in development and regeneration. Cell Tissue Res., 290: 379-384.
Fitch, M.T., Doller, C., Combs, C.K., Landreth, G.E. and Silver, J. (1999) Cellular and molecular mechanisms of glial scarring and progressive cavitation: In vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J. Neurosci., 19: 8182-8198.
Gadisseux, J.F., Evrard, P., Misson, J.P. and Caviness, V.S. (1989) Dynamic structure of the radial glial fiber system of the developing murine cerebral wall. An immunocytochemical analysis. Brain Res. Dev. Brain Res., 50: 55-67.
Gadisseux, J.F., Evrard, P., Misson, J.-P. and Caviness, V.S. (1992) Dynamic changes in the density of radial glial fibers of the developing murine cerebral wall: A quantitative immunohistological analysis. J. Comp. Neurol., 321: 1-9.
Gaiano, N., Nye, J.S. and Fishell, G. (2000) Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron, 26: 395-404.
Gotz, M., Stoykova, A. and Gruss, P. (1998) Pax6 controls radial glia differentiation in the cerebral cortex. Neuron, 21: 1031-1044.
Gray, G.E. and Sanes, J.R. (1992) Lineage of radial glia in the chicken optic tectum. Development, 114: 271-283.
Gressens, P. and Evrard, P. (1993) The glial fascicle: An ontogenic and phylogenic unit guiding, supplying and distributing mammalian cortical neurons. Brain Res. Dev. Brain Res., 76: 272-277.
Gressens, P., Richelme, C., Kadhim, H.J., Gadisseux, J.F. and Evrard, P. (1992) The germinative zone produces the most cortical astrocytes after neuronal migration in the developing mammalian brain. Biol. Neonate, 61: 4-24.
Halliday, A.L. and Cepko, C.L. (1992) Generation and migration of cells in the developing striatum. Neuron, 9: 15-26.
Hartfuss, E., Galli, R., Heins, N. and Gotz, M. (2001) Characterization of CNS precursor subtypes and radial glia. Dev. Biol., 229: 15-30.
Hartmann, D., Ziegenhagen, M.W. and Sievers, J. (1998) Meningeal cells stimulate neuronal migration and the formation of radial glial fascicles from the cerebellar external granular layer. Neurosci. Lett., 244: 129-132.
Hatten, M.E. (1990) Riding the glial monorail: A common mechanism for glial-guided neuronal migration in different regions of the developing mammalian brain. Trends Neurosci., 13(5): 179-184.
Hatten, M.E. (1993) The role of migration in central nervous system neuronal development. Curr. Opin. Neurobiol., 3: 38-44.
Hatten, M.E. (1999) Central nervous system neuronal migration. Annu. Rev. Neurosci., 22: 511-539.
Hill, R.E., Favor, J., Hogan, B.L., Ton, C.C., Saunders, G.F., Hanson, I.M., Prosser, J., Jordan, T., Hastie, N.D. and van Heyningen, V. (1991) Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature, 354: 522-525. [Published erratum appears in Nature (1992) 355 (6362): 750.]
Hirotsune, S., Takahara, T., Sasaki, N., Hirose, K., Yoshiki, A., Ohashi, T., Kusakabe, M., Murakami, Y., Muramatsu, M. and Watanabe, S. (1995) The reeler gene encodes a protein with an EGF-like motif expressed by pioneer neurons [see comments]. Nat. Genet, 10: 77-83.
Hitchcock, P.F. and Raymond, P.A. (1992) Retinal regeneration. Trends Neurosci., 15: 103-108.
Hockfield, S. and McKay, R.D.G. (1985) Identification of major cell classes in the developing mammalian nervous system. J. Neurosci., 5(12): 3310-3328.
Hunter-Schaedle, K.E. (1997) Radial glial cell development and transformation are disturbed in reeler forebrain. J. Neurobiol., 33: 459-472.
Hunter, K.E. and Hatten, M.E. (1995) Radial glial cell transformation to astrocytes is bidirectional: Regulation by a diffusible factor in embryonic forebrain. Proc. Natl. Acad. Sci. USA, 92: 2061-2065.
Hunter, K.E. and Hatten, M.E. (1997) The novel astroglial differentiation factor RF60 limits gliosis when infused into adult cortical stab wound. Soc. Neurosci. Meet., 23: 1129.
Kadhim, H.J., Gadisseux, J.F. and Evrard, P. (1988) Topographical and cytological evolution of the glial phase during prenatal development of the human brain: Histochemical and electron microscopic study. J. Neuropathol. Exp. Neurol., 47: 166-188.
Kalman, M., Szekely, A.D. and Csillag, A. (1998) Distribution of glial fibrillary acidic protein and vimentin-immunopositive elements in the developing chicken brain from hatch to adulthood. Anat. Embryol. (Berl.), 198: 213-235.
Kamei, Y., Inagaki, N., Nishizawa, M., Tsutsumi, O., Taketani, Y. and Inagaki, M. (1998) Visualization of mitotic radial glial lineage cells in the developing rat brain by Cdc2 kinase-phosphorylated vimentin. Glia, 23: 191-199.
Kilpatrick, T.J. and Bartlett, P.F. (1993) Cloning and growth of multipotential neural precursors: Requirements for proliferation and differentiation. Neuron, 10: 255-265.
Krueger, B.K., Burne, J.F. and Raff, M.C. (1995) Evidence for large-scale astrocyte death in the developing cerebellum. J. Neurosci., 15: 3366-3374.
Kurtz, A., Zimmer, A., Schnütgen, F., Brüning, G., Spener, F. and Müller, T. (1994) The expression pattern of novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development. Development, 120: 2637-2649.
Leavitt, B.R., Hernit-Grant, C.S. and Macklis, J.D. (1999) Mature astrocytes transform into transitional radial glia within adult mouse neocortex that supports directed migration of transplanted immature neurons. Exp. Neurol., 157: 43-57.
Levitt, P. and Rakic, P. (1980) Immunoperoxydase localisation of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J. Comp. Neurol., 193: 815-840.
Levitt, P., Cooper, M.L. and Rakic, P. (1981) Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: An ultrastructural immunoperoxidase analysis. J. Neurosci., 1: 27-39.
Levitt, P., Cooper, M.L. and Rakic, P. (1983) Early divergence and changing proportions of neuronal and glial precursor cells in the primate cerebral ventricular zone. Dev. Biol., 96: 472-484.
Macklis, J.D. (1993) Transplanted neocortical neurons migrate selectively into regions of neuronal degeneration produced by chromophore-targeted laser photolysis. J. Neurosci., 13: 3848-3863.
Malatesta, P., Hartfuss, E. and Gotz, M. (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127: 5253-5263.
Marin-Padilla, M. (1995) Prenatal development of fibrous (white matter), protoplasmic (gray matter), and layer I astrocytes in the human cerebral cortex: A Golgi study. J. Comp. Neurol., 357: 554-572.
Mayer-Proschel, M., Kalyani, A.J., Mujtaba, T. and Rao, M.S. (1997) Isolation of lineage-restricted neuronal precursors from multipotent neuroepithelial stem cells. Neuron, 19: 773-785.
McConnell, S.K. (1995) Constructing the cerebral cortex: Neurogenesis and fate determination. Neuron, 15: 761-768.
Meyer, S.A., Ingraham, C.A. and McCarthy, K.D. (1989) Expression of vimentin by cultured astroglia and oligodendroglia. J. Neurosci. Res., 24: 251-259.
Misson, J.-P., Edwards, M.A., Yamamoto, M. and Caviness, V.S. (1988a) Identification of radial glial cells within the developing murine central nervous system: Studies based upon a new immunohistochemical marker. Dev. Brain Res., 44: 95-108.
Misson, J.-P., Edwards, M.A., Yamamoto, M. and Caviness Jr., V.S. (1988b) Mitotic cycling of radial glial cells of the fetal murine cerebral wall: A combined autoradiographic and immunohistochemical study. Brain Res., 466: 183-190.
Misson, J.P., Takahashi, T. and Caviness Jr., V.S. (1991) Ontogeny of radial and other astroglial cells in murine cerebral cortex. Glia, 4: 138-148.
Monzon-Mayor, M., Yanes, C., Ghandour, M.S., de Barry, J. and Gombos, G. (1990) Glial fibrillary acidic protein and vimentin immunohistochemistry in the developing and adult midbrain of the lizard Gallotia galloti. J. Comp. Neurol., 295: 569-579.
Noctor, S.C., Flint, A.C., Weissman, T.A., Dammerman, R.S. and Kriegstein, A.R. (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409: 714-720.
Oudega, M. and Marani, E. (1991) Expression of vimentin and glial fibrillary acidic protein in the developing rat spinal cord: An immunocytochemical study of the spinal cord glial system. J. Anat., 179: 97-114.
Patapoutian, A., Wold, B.J. and Wagner, R.A. (1995) Evidence for developmentally programmed transdifferentiation in mouse esophageal muscle. Science, 270: 1818-1821.
Pinto-Lord, M.C., Evrard, P. and Caviness Jr., V.S. (1982) Obstructed neuronal migration along radial glial fibers in the neocortex of the reeler mouse: A Golgi-EM analysis. Brain Res., 256: 379-393.
Pixley, S.K. and de Vellis, J. (1984) Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Brain Res., 317: 201-209.
Rakic, P. (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol., 145: 61-84.
Raḿon y Cajal, S. (1955) Histologie du Système Nerveux de L'homme et des Vertébrés. Maloine, Paris.
Ridet, J.L., Malhotra, S.K., Privat, A. and Gage, F.H. (1997) Reactive astrocytes: Cellular and molecular cues to biological function. Trends Neurosci., 20: 570-577. [Published erratum appears in Trends Neurosci. (1998) Feb; 21(2): 80].
Rio, C., Rieff, H.I., Qi, P. and Corfas, G. (1997) Neuregulin and erbB receptors play a critical role in neuronal migration. Neuron, 19: 39-50.
Sheen, V.L. and Macklis, J.D. (1995) Targeted neocortical cell death in adult mice guides migration and differentiation of transplanted embryonic neurons. J. Neurosci., 15: 8378-8392.
Sievers, J. and Pehlemann, F.W. (1986) Influences of meningeal cells on brain development. Findings and hypothesis. Naturwissenschaften, 73: 188-194.
Sievers, J., Von Knebel, D.C., Pehlemann, F.W. and Berry, M. (1986) Meningeal cells influence cerebellar development over a critical period. Anat. Embryol. (Berl.), 175: 91-100.
Sievers, J., Pehlemann, F.W., Gude, S. and Berry, M. (1994) Meningeal cells organize the superficial glia limitans of the cerebellum and produce components of both the interstitial matrix and the basement membrane. J. Neurocytol., 23: 135-149.
Soriano, E., Del Rio, J.A. and Auladell, C. (1993) Characterization of the phenotype and birthdates of pyknotic dead cells in the nervous system by a combination of DNA staining and immunohistochemistry for 5′-bromodeoxyuridine and neural antigens. J. Histochem. Cytochem., 41: 819-827.
Soriano, E., Alvarado-Mallart, R.M., Dumesnil, N., Del Rio, J.A. and Sotelo, C. (1997) Cajal-Retzius cells regulate the radial glia phenotype in the adult and developing cerebellum and alter granule cell migration. Neuron, 18: 563-577.
Sotelo, C., Alvarado-Mallart, R.M., Frain, M. and Vernet, M. (1994) Molecular plasticity of adult Bergmann fibers is associated with radial migration of grafted Purkinje cells. J. Neurosci., 1: 124-133.
St Onge, L., Sosa-Pineda, B., Chowdhury, K., Mansouri, A. and Gruss, P. (1997) Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature, 387:406-409.
Suidan, H.S., Nobes, C.D., Hall, A. and Monard, D. (1997) Astrocyte spreading in response to thrombin and lysophosphatidic acid is dependent on the Rho GTPase. Glia, 21: 244-252.
Takahashi, T., Misson, J.-P. and Caviness, V.S. (1990) Glial process elongation and branching in the developing murine neocortex: A qualitative and quantitative immunohistochemical analysis. J. Comp. Neurol., 302: 15-28.
Temple, S. and Qian, X. (1996) Vertebrate neural progenitor cells: Subtypes and regulation. Curr. Opin. Neurobiol., 6: 11-17.
Toresson, H., Mata, D.U., Fagerstrom, C., Perlmann, T. and Campbell, K. (1999) Retinoids are produced by glia in the lateral ganglionic eminence and regulate striatal neuron differentiation. Development, 126: 1317-1326.
Voigt, T. (1989) Development of glial cells in the cerebral wall of ferrets: Direct tracing of their transformation from radial glia into astrocytes. J. Comp. Neurol., 289: 74-88.
Von Knebel, D.C., Sievers, J., Sadler, M., Pehlemann, F.W., Berry, M. and Halliwell, P. (1986) Destruction of meningeal cells over the newborn hamster cerebellum with 6-hydroxydopamine prevents foliation and lamination in the rostral cerebellum. Neuroscience, 17: 409-426.
Weidenheim, K.M., Epshteyn, I., Rashbaum, W.K. and Lyman, W.D. (1994) Patterns of glial development in the human foetal spinal cord during the late first and second trimester. J. Neurocytol., 23: 343-353.
Williams, B.P. and Price, J. (1995) Evidence for multiple precursor cell types in the embryonic rat cerebral cortex. Neuron, 14: 1181-1188.
Yandava, B.D., Billinghurst, L.L. and Snyder, E.Y. (1999) 'Global' cell replacement is feasible via neural stem cell transplantation: Evidence from the dysmyelinated shiverer mouse brain. Proc. Natl. Acad. Sci. USA, 96: 7029-7034.
Yanes, C., Monzon-Mayor, M., Ghandour, M.S., de Barry, J. and Gombos, G. (1990) Radial glia and astrocytes in developing and adult telencephalon of the lizard Gallotia galloti as revealed by immunohistochemistry with anti-GFAP and anti-vimentin antibodies. J. Comp. Neurol., 295: 559-568.
Yuasa, S. (1996) Bergmann glial development in the mouse cerebellum as revealed by tenascin expression. Anat. Embryol., 194: 223-234.
Yuasa, S., Kitoh, J., Oda, S. and Kawamura, K. (1993) Obstructed migration of Purkinje cells in the developing cerebellum of the reeler mutant mouse. Anat. Embryol. (Berl.), 188: 317-329.
Zhang, S.C., Ge, B. and Duncan, I.D. (1999) Adult brain retains the potential to generate oligodendroglial progenitors with extensive myelination capacity. Proc. Natl. Acad. Sci. USA, 96: 4089-4094.